Forward Jet Production and BFKL Dynamics at HERA

August 30, 2007

Workshop on low x physics, Helsinki

Pierre Van Mechelen Pierre.VanMechelen@ua.ac.be

QCD description of jet production in DIS

Matching of matrix element (ME) to parton showers (PS)

- ME can be O(α) (QPM), O($\alpha \alpha_s$) (BGF, QCD-Compton), O($\alpha \alpha_s^2$), ...
 - \rightarrow exact calculation for fixed orders
- higher orders are covered by PS which sum a subset of (leading) diagrams at each order
 → which diagrams are leading depends on kinematics (x,Q²)
- different approaches for PS exist: DGLAP, BFKL, CCFM, ...:
 - resumming of different diagrams $\sim (\alpha_s \ln Q^2/Q_0^2)^n, (\alpha_s \ln 1/x)^n$
 - differences in ordering of $k_{T,i}$, x_i of parton emissions

→ Final state jet studies can validate fixed order ME calculations and distinguish different PS approaches

Why bother?

- the inclusive DIS cross section (F₂) is very well described by DGLAP, but also allows for BFKL terms
- DGLAP fails to describe forward jet production at small x
- novel QCD effects at low x, where the gluon density becomes very large, are expected (saturation, colour glass condensate, ...)
- → Consequences for the LHC?
- many SM and BSM processes at the LHC involve the collision of partons with small x
- standard prescription: take pdfs from HERA and evolve them to higher Q² according to DGLAP
- → Forward and multijet studies at HERA are needed to predict low-x effects at the LHC

• Fixed order matrix element calculations

fixed order ME calculations yield parton level predictions→ hadronisation corrections must be applied to these calculations

Full Monte Carlo models use LO matrix elements + parton showers + hadronisation \rightarrow yield hadron level predictions

P. Van Mechelen - Forward jet production and BFKL dynamics at HERA - 30/08/07 - Low x Meeting Helsinki 2007

- Measurements covered in this talk:
 - Multijet production at low x_{Bj} in deep inelastic scattering at HERA
 ZEUS Collaboration, DESY-07-062 (May 2007), submitted to Nucl. Phys. B
 arXiv:0705.1931v1 [hep-ex]
 - Forward-jet production in deep inelastic *ep* scattering at HERA ZEUS Collaboration, DESY-07-100 (July 2007), submitted to Eur. Phys. J. C arXiv:0707.3093v2 [hep-ex]
 - Three- and four-jet production in deep-inelastic scattering at HERA and low-x parton dynamics
 H1 Collaboration, to be published
- Previous results:
 - Forward jet production in deep inelastic scattering at HERA H1 Collaboration, Eur. Phys. J. C46 (2006) 27-42 arXiv:hep-ex/0508055
 - Forward jet production in deep inelastic *ep* scattering and low-x parton dynamics at HERA ZEUS Collaboration, Phys.Lett. B632 (2006) 13-26 arXiv:hep-ex/0502029v1

- DIS selection...
- Jet finding algorithm
 - inclusive k_{τ} algorithm in $\gamma^* p$ centre of mass or Breit frame
- Jet pseudorapidity range: determined by calorimeter coverage
 - ZEUS CAL: $-1.5 < \eta^{jet} < 2$ (multijet analysis)
 - ZEUS CAL + FPC: 2 < η^{jet} < 4.3 (forward jet analysis)
 - H1 LAr calorimeter: $-1 < \eta^{jet} < 2.5$ (3- and 4-jet analysis)
- Data and model corrections
 - detector level —

detector simulation (GEANT)

- hadron level

fragmentation model (Lund string model)

- parton level

Multijet production at low x

- Aim: check ME calculations for 2- and 3-jet production at NLO
- Method:
 - measure 2- and 3-jet single differential cross section and cross section ratios
 - use energy-momentum balance to search for gluon radiation beyond NLO calculations

- Kinematic selection:
 - $10 < Q^2 < 100 \text{ GeV}^2$, $10^{-4} < x < 10^{-2}$, 0.1 < y < 0.6
 - $-1.0 < \eta^{jet} < 2.5, E_T^{jet1*} > 7 \text{ GeV}, E_T^{jet2,3*} > 5 \text{ GeV}$

Inclusive 2-jet and 3-jet cross sections

• Q² and x dependence

- trijet to dijet ratio is Q² independent but increases steeply towards small x
- cross sections and cross section ratios are well described by NLO $O(\alpha \alpha_s^2)$, $O(\alpha \alpha_s^3)$ calculations

Inclusive dijet and trijet cross sections

- Q^2 and x dependence
 - trijet to dijet ratio is Q^2 independent but increases steeply towards small X
 - cross sections and cross section ratios are well described by NLO $O(\alpha \alpha_{s}^{2})$, $O(\alpha \alpha_{s}^{3})$ calculations
 - $E_{T}^{jet^{*}}$ and η^{jet} dependence
 - cross sections well described by NLO O($\alpha \alpha_{s}^{2}$), O($\alpha \alpha_{s}^{3}$) calculations over whole $E_{T}^{jet^*}$ range

Inclusive dijet and trijet cross sections

• Q² and x dependence

- trijet to dijet ratio is Q² independent but increases steeply towards small x
- cross sections and cross section ratios are well described by NLO $O(\alpha \alpha_s^2)$, $O(\alpha \alpha_s^3)$ calculations
- $E_{T}^{jet^{*}}$ and η^{jet} dependence
 - cross sections well described by NLO O($\alpha \alpha_s^2$), O($\alpha \alpha_s^3$) calculations over whole $E_T^{jet^*}$ range
 - η^{jet} and $\Delta(\eta^{jet12*})$ distribution well described by NLO O($\alpha \alpha_s^2$), O($\alpha \alpha_s^3$) calculations

Transverse energy correlations:

 $\Delta E_{\tau}^{jet1,2^*} \approx 0$

 $|\sum \mathbf{p}_T^{jet1,2^*}| \approx 0$

 $|\Delta \varphi^{jet1,2^*}| \approx \pi$

- high- $\Delta E_T^{jet1,2*}$ tail not well described by $O(\alpha \alpha_s^2)$ calculations for 2-jet production at low x
- $O(\alpha \alpha_{s}^{3})$ calculations fine for 2-jet and 3-jet production

 $\Delta E_{T,HCM}^{jet1,2}$ (GeV)

 $\Delta E_{\tau}^{jet1,2^*} > 0$

 $|\Delta \varphi^{jet1,2^*}| < \pi$

Transverse energy correlations:

 $\Delta E_{\tau}^{jet1,2^*} \approx 0$

 $|\sum \mathbf{p}_T^{jet1,2^*}| \approx 0$

 $|\Delta \varphi^{jet1,2^*}| \approx \pi$

- high- $\Delta E_T^{jet1,2*}$ tail not well described by $O(\alpha \alpha_s^2)$ calculations for 2-jet production at low x
- $O(\alpha \alpha_{s^3})$ calculations fine for 2-jet and 3-jet production

P. Van Mechelen - Forward jet production and BFKL dynamics at HERA - 30/08/07 - Low x Meeting Helsinki 2007

 $\Delta E_{\tau}^{jet1,2^*} > 0$

 $|\sum \mathbf{p}_{T}^{jet1,2^{*}}| > 0$

 $|\Delta \varphi^{jet1,2^*}| < \pi$

- Transverse energy correlations:
 - high- $\Delta E_T^{jet1,2*}$ tail not well described by O($\alpha \alpha_s^2$) calculations for 2-jet production at low x
 - $O(\alpha \alpha_s^3)$ calculations fine for 2-jet and 3-jet production
- Momentum/φ balance

 $\Delta E_{\tau}^{jet1,2^*} \approx 0$

 $|\sum \mathbf{p}_{T}^{jet1,2^{*}}| \approx 0$

 $|\Delta \varphi^{jet1,2^*}| \approx \pi$

- $O(\alpha \alpha_s^2)$ misses extra radiation for dijet production at low x
- $O(\alpha \alpha_s^3)$ calculations fine for 2-jet and 3-jet production

 $|\Delta \mathbf{p}_{T}^{jet1,2^{*}}|/2E_{T}^{jet1*} \approx 1 |\Delta \mathbf{p}_{T}^{jet1,2^{*}}|/2E_{T}^{jet1*} < 1$

 $\Delta E_{\tau}^{jet1,2^*} > 0$

 $|\sum \mathbf{p}_{T}^{jet1,2^{*}}| > 0$

 $|\Delta \varphi^{jet1,2^*}| < \pi$

P. Van Mechelen - Forward jet production and BFKL dynamics at HERA - 30/08/07 - Low x Meeting Helsinki 2007

234

10 20

1

234

10 20

|∑ $\vec{p}_{_{T,HCM}}^{jet1,2}$ | (GeV)

100

- Transverse energy correlations:
 - high- $\Delta E_T^{jet1,2*}$ tail not well described by $O(\alpha \alpha_s^2)$ calculations for 2-jet production at low x
 - $O(\alpha \alpha_{s}^{3})$ calculations fine for 2-jet and 3-jet production
- Momentum/ ϕ balance

 $\Delta E_{\tau}^{jet1,2^*} \approx 0$

 $|\sum \mathbf{p}_{T}^{jet1,2^{*}}| \approx 0$

 $|\Delta \varphi^{jet1,2^*}| \approx \pi$

- $O(\alpha \alpha_s^2)$ misses extra radiation for dijet production at low x
- $O(\alpha \alpha_{s}^{3})$ calculations fine for 2-jet and 3-jet production

 $\Delta E_{\tau}^{jet1,2^*} > 0$

 $|\sum \mathbf{p}_{\tau}^{jet1,2^*}| > 0$

 $|\Delta \varphi^{jet1,2^*}| < \pi$

P. Van Mechelen - Forward jet production and BFKL dynamics at HERA - 30/08/07 - Low x Meeting Helsinki 2007

- Transverse energy correlations:
 - high- $\Delta E_T^{jet1,2*}$ tail not well described by $O(\alpha \alpha_s^2)$ calculations for 2-jet production at low x
 - $O(\alpha \alpha_{s}^{3})$ calculations fine for 2-jet and 3-jet production
- Momentum/φ balance

 $\Delta E_{\tau}^{jet1,2*} \approx 0$

 $|\sum \mathbf{p}_T^{jet1,2^*}| \approx 0$

 $|\Delta \varphi^{jet1,2^*}| \approx \pi$

- $O(\alpha \alpha_s^2)$ misses extra radiation for dijet production at low x
- $O(\alpha \alpha_{s}^{3})$ calculations fine for 2-jet and 3-jet production

 $\Delta E_{\tau}^{jet1,2^*} > 0$

 $|\Delta \varphi^{jet1,2^*}| < \pi$

 $|\sum \mathbf{p}_{T}^{jet1,2^{*}}| > 0$

|∆ $\vec{p}_{_{T,HCM}}^{jet1,2}$ |/(2E_{T,H}

- Transverse energy correlations:
 - high- $\Delta E_T^{jet1,2*}$ tail not well described by O($\alpha \alpha_s^2$) calculations for 2-jet production at low x
 - $O(\alpha \alpha_s^3)$ calculations fine for 2-jet and 3-jet production
- Momentum/φ balance

 $\Delta E_{\tau}^{jet1,2^*} \approx 0$

 $|\sum \mathbf{p}_{T}^{jet1,2^{*}}| \approx 0$

 $|\Delta \varphi^{jet1,2^*}| \approx \pi$

- $O(\alpha \alpha_s^2)$ misses extra radiation for dijet production at low x
- $O(\alpha \alpha_s^3)$ calculations fine for 2-jet and 3-jet production

 $|\Delta \mathbf{p}_{T}^{jet1,2*}|/2E_{T}^{jet1*} \approx 1 |\Delta \mathbf{p}_{T}^{jet1,2*}|/2E_{T}^{jet1*} < 1$

 $\Delta E_{\tau}^{jet1,2^*} > 0$

 $|\sum \mathbf{p}_{\tau}^{jet1,2^{*}}| > 0$

 $|\Delta \varphi^{jet1,2^*}| < \pi$

0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8

- Transverse energy correlations:
 - high- $\Delta E_T^{jet1,2*}$ tail not well described by O($\alpha \alpha_s^2$) calculations for 2-jet production at low x
 - $O(\alpha \alpha_s^3)$ calculations fine for 2-jet and 3-jet production
- Momentum/φ balance

 $\Delta E_{\tau}^{jet1,2*} \approx 0$

 $|\sum \mathbf{p}_{T}^{jet1,2^{*}}| \approx 0$

 $|\Delta \varphi^{jet1,2^*}| \approx \pi$

- $O(\alpha \alpha_s^2)$ misses extra radiation for dijet production at low x
- $O(\alpha \alpha_s^3)$ calculations fine for 2-jet and 3-jet production

 $|\Delta \mathbf{p}_{T}^{jet1,2*}|/2E_{T}^{jet1*} \approx 1 |\Delta \mathbf{p}_{T}^{jet1,2*}|/2E_{T}^{jet1*} < 1$

 $\Delta E_{\tau}^{jet1,2^*} > 0$

 $|\sum \mathbf{p}_T^{jet1,2^*}| > 0$

 $|\Delta \varphi^{jet1,2^*}| < \pi$

2.5 3

0.5

- Transverse energy correlations:
 - high- $\Delta E_{\tau}^{jet1,2*}$ tail not well described by $O(\alpha \alpha_s^2)$ calculations for 2-jet production at low x
 - $O(\alpha \alpha_{s}^{3})$ calculations fine for 2-jet and 3-jet production
- Momentum/φ balance

 $\Delta E_{\tau}^{jet1,2^*} \approx 0$

 $|\sum \mathbf{p}_{T}^{jet1,2^{*}}| \approx 0$

 $|\Delta \varphi^{jet1,2^*}| \approx \pi$

- $O(\alpha \alpha_s^2)$ misses extra radiation for dijet production at low x
- $O(\alpha \alpha_{s}^{3})$ calculations fine for 2-jet and 3-jet production

 $\Delta E_{\tau}^{jet1,2^*} > 0$

 $|\sum \mathbf{p}_{T}^{jet1,2^{*}}| > 0$

 $|\Delta \varphi^{jet1,2^*}| < \pi$

3

- Transverse energy correlations:
 - high- $\Delta E_T^{jet1,2*}$ tail not well described by O($\alpha \alpha_s^2$) calculations for 2-jet production at low x
 - $O(\alpha \alpha_{s}^{3})$ calculations fine for 2-jet and 3-jet production
- Momentum/φ balance

 $\Delta E_{\tau}^{jet1,2*} \approx 0$

 $|\sum \mathbf{p}_{T}^{jet1,2^{*}}| \approx 0$

 $|\Delta \varphi^{jet1,2^*}| \approx \pi$

- $O(\alpha \alpha_s^2)$ misses extra radiation for dijet production at low x
- $O(\alpha \alpha_{s}^{3})$ calculations fine for 2-jet and 3-jet production

 $\Delta E_{\tau}^{jet1,2^*} > 0$

 $|\sum \mathbf{p}_{T}^{jet1,2^{*}}| > 0$

 $|\Delta \varphi^{jet1,2^*}| < \pi$

- 2-jet and 3-jet production at low x:
 - aim: check ME calculations for 2- and 3-jet production at NLO
 - conclusion: NLO (O($\alpha \alpha_s^2$), O($\alpha \alpha_s^3$)) calculations work well; O($\alpha \alpha_s^3$)) is especially needed for 2-jet production at low x when additional gluon radiation is highlighted

Forward jet production in DIS

- Aim: check ME calculations at NLO and PS models in a region of phase space where additional gluon radiation and/or non-ordered PS are expected
- Method: enhance BFKL signal

- $0.5 < (E_T^{jet})^2/Q^2 < 2$ (only for inclusive forward jet cross section)

Inclusive forward jet production

- Comparison to fixed order ME calculations (DISENT):
 - large correction from LO O($\alpha \alpha_s$) to NLO O($\alpha \alpha_s^2$)
 - NLO O($\alpha \alpha_s^2$) still factor 2 below data

Inclusive forward jet production

- Comparison to fixed order ME calculations (DISENT):
 - large correction from LO O($\alpha \alpha_s$) to NLO O($\alpha \alpha_s^2$)
 - NLO O($\alpha \alpha_s^2$) still factor 2 below data
- Comparison to LO ME+PS Monte Carlo models:
 - ARIADNE (CDM) gives a good description of the data
 - LEPTO (DGLAP) falls below the data by factor 2...

Inclusive forward jet production

- Comparison to fixed order ME calculations (DISENT):
 - large correction from LO O($\alpha \alpha_s$) to NLO O($\alpha \alpha_s^2$)
 - NLO O($\alpha \alpha_s^2$) still factor 2 below data
- Comparison to LO ME + PS Monte Carlo models:
 - ARIADNE (CDM) gives a good description of the data
 - LEPTO (DGLAP) falls below the data by factor 2... but RAPGAP (DGLAP with a resolved photon) describes the data well

- Comparison to fixed order ME calculations (DISENT):
 - large correction from LO O($\alpha \alpha_s$) to NLO O($\alpha \alpha_s^2$)
 - NLO O($\alpha \alpha_s^2$) still factor 2 below data
- Comparison to LO ME + PS Monte Carlo models:
 - ARIADNE (CDM) gives a good description of the data
 - LEPTO (DGLAP) falls below the data by factor 2... but RAPGAP (DGLAP with a resolved photon) describes the data well
 - CASCADE (CCFM) with two different sets of unintegrated PDFs does not describe the shape of the distributions

- Comparison to fixed order ME calculations (DISENT):
 - NLO O($\alpha \alpha_s^2$) calculations underestimate the cross section, especially at high Q^2 and $(E_T^{jet})^2 < 100 \text{ GeV}^2$

Triple-differential cross section

- Comparison to fixed order ME calculations (DISENT):
 - NLO O($\alpha \alpha_{s^2}$) calculations underestimate the cross section, especially at high Q^2 and $(E_{\tau}^{jet})^2 < 100 \text{ GeV}^2$
- Comparison to LO ME + PS Monte Carlo models:
 - ARIADNE (tuned) (CDM) gives a good description of data
 - LEPTO (DGLAP) below data...

η^{jet}

 $20 < O^2 < 40 \text{ GeV}^2$

RIADNE ARIADNE (tuned)

ZEUS

 $40 < O^2 < 100 \text{ GeV}^2$

ZEUS 82 pb⁻¹

Energy Scale Uncertainty

η^{jet}

Triple-differential cross section

- Comparison to fixed order ME calculations (DISENT):
 - NLO O($\alpha \alpha_s^2$) calculations underestimate the cross section, especially at high Q^2 and $(E_T^{jet})^2 < 100 \text{ GeV}^2$
- Comparison to LO ME + PS Monte Carlo models:
 - ARIADNE (tuned) (CDM) gives a good description of data
 - LEPTO (DGLAP) below data... but RAPGAP (DGLAP with a resolved photon) describes the data well

Triple-differential cross section

- Comparison to fixed order ME calculations (DISENT):
 - NLO O($\alpha \alpha_s^2$) calculations underestimate the cross section, especially at high Q^2 and $(E_T^{jet})^2 < 100 \text{ GeV}^2$
- Comparison to LO ME + PS Monte Carlo models:
 - ARIADNE (tuned) (CDM) gives a good description of data
 - LEPTO (DGLAP) below data... but RAPGAP (DGLAP with a resolved photon) describes the data well
 - none of unintegrated PDFs sets allow to accomodate all features of the data with CASCADE (CCFM)

ZEUS

- Comparison to fixed order ME calculations (NLOJET++):
 - NLO O($\alpha \alpha_s^3$) describes the data well at large $\Delta \eta_2$
 - NLO O($\alpha \alpha_s^3$) fails when 2 or more jets go forward (small $\Delta \eta_2$)

ZEUS

- Comparison to fixed order ME calculations (NLOJET++):
 - NLO O($\alpha \alpha_s^3$) describes the data well at large $\Delta \eta_2$
 - NLO O($\alpha \alpha_s^3$) fails when 2 or more jets go forward (small $\Delta \eta_2$)
- Comparison to LO ME + PS Monte Carlo models:
 - ARIADNE (tuned) (CDM) gives good agreement
 - LEPTO (DGLAP) below data...

Forward + dijet production

- Comparison to fixed order ME calculations (NLOJE
 - NLO O($\alpha \alpha_s^3$) des at large $\Delta \eta_2$
 - NLO O(αα_s³) fail
 jets go forward
- Comparison to LO N models:
 - ARIADNE (tuned agreement
 - LEPTO (DGLAP) below data... and so is RAPGAP (DGLAP with a resolved photon) !!

- Comparison to fixed order ME calculations (NLOJET++):
 - NLO O($\alpha \alpha_s^3$) describes the data well at large $\Delta \eta_2$
 - NLO O($\alpha \alpha_s^3$) fails when 2 or more jets go forward (small $\Delta \eta_2$)
- Comparison to LO ME + PS Monte Carlo models:
 - ARIADNE (tuned) (CDM) gives good agreement
 - LEPTO (DGLAP) below data... and so is RAPGAP (DGLAP with a resolved photon) !!
 - CASCADE (CCFM) not satisfactory

- 2-jet and 3-jet production at low x_{Bj} :
 - aim: check ME calculations for 2- and 3-jet production at NLO
 - conclusion: NLO (O($\alpha \alpha_s^2$), O($\alpha \alpha_s^3$)) calculations work well and is especially needed at low_ x_{Bi} when additional gluon radiation is highlighted
- Forward-jet production:
 - aim: check ME calculations at NLO and PS models in a region of phase space where additional gluon radiation and/or non-ordered PS are expected
 - conclusion: NLO (O($\alpha \alpha_s^2$)) below data, sometimes by factor 2; simple DGLAP fails but DGLAP with a resolved photon and CDM describe data well; CASCADE fails; when looking at forward-jet + dijet production, DGLAP with a resolved photon and CDM can be differentiated: CDM survives while DGLAP does not.

- Aim: check ME calculations at NLO and PS models by looking at 3-jet topologies in regions of phase space where additional gluon radiation and/or non-ordered PS are expected
- Method:
 - measure 3-jet cross sections
 - exploit three-jet topology
 - scaled energy in 3-jet rest frame $X_i = 2 E'_i/(E'_1 + E'_2 + E'_3)$
 - angles θ', ψ' in 3-jet rest frame
 - look for events with at least 1 forward jet
 - $\Theta^{\text{fwdjet}} < 20^{\circ}, x^{\text{fwdjet}} = E^{\text{fwdjet}}/E^{\rho} > 0.035$
- Kinematic selection:
 - $5 < Q^2 < 80 \text{ GeV}^2$, 0.1 < y < 0.7, $10^{-4} < x < 10^{-2}$, $156^\circ < \theta_e < 175$, $E_e > 9 \text{ GeV}$

-
$$N_{jet} > 3$$
, $p_T^{jet} > 4$ GeV, $p_T^{jet1} + p_T^{jet2} > 9$ GeV,
-1 < η^{jet} < 2.5 (one jet with -1 < η^{jet} < 1.3)

- Jet multiplicity
 - CDM gives excellent description; RAPGAP DIR+RES (DGLAP with a resolved photon) fails at high jet multiplicity
 - NLO O($\alpha \alpha_s^3$) agrees for $N_{jet} = 3$ but misses 18% of events with 4 or more jets

3-jet cross sections

- Jet multiplicity
 - CDM gives excellent description; RAPGAP DIR+RES (DGLAP with a resolved photon) fails at high jet multiplicity
 - NLO O($\alpha \alpha_s^3$) agrees for $N_{jet} = 3$ but misses 18% of events with 4 or more jets
- x and η^{jet} dependence
 - main discrepancies are seen at low x and forward η^{jet}
 - NLO O($\alpha \alpha_s^3$) improves the description considerably w.r.t. LO O($\alpha \alpha_s^2$) in all regions where deviations are observed

3-jet cross sections

- Jet multiplicity
 - CDM gives excellent description; RAPGAP DIR+RES (DGLAP with a resolved photon) fails at high jet multiplicity
 - NLO O($\alpha \alpha_s^3$) agrees for $N_{jet} = 3$ but misses 18% of events with 4 or more jets
- x and η^{jet} dependence
 - main discrepancies are seen at low x and forward η^{jet}
 - NLO O($\alpha \alpha_s^3$) improves the description considerably w.r.t. LO O($\alpha \alpha_s^2$) in all regions where deviations are observed
- Jet topology
 - 3-jet topology is well described by NLO O($\alpha \alpha_s^3$), except for the 18% normalisation difference

3-jets events with at least 1 forward jet

- *x* dependence
 - main discrepancy seen at low x with 2 forward jets

Comparison to PS models

- 3-jet cross sections:
 - absolute normalisation too low
 - RAPGAP (DGLAP with a resolved photon) scaled by 174%
 - CDM scaled by 108%
 - RAPGAP fails in several aspects

- 3-jet cross sections:
 - absolute normalisation too low
 - RAPGAP (DGLAP with a resolved photon) scaled by 174%
 - CDM scaled by 108%
 - RAPGAP fails in several aspects

- 3-jet cross sections:
 - absolute normalisation too low
 - RAPGAP (DGLAP with a resolved photon) scaled by 174%
 - CDM scaled by 108%
 - RAPGAP fails in several aspects
- 2 fwd + 1 cnt jet cross sections
 - Absolute normalisation too low
 - RAPGAP (DGLAP with a resolved photon) scaled by 385%
 - CDM scaled by 109%
 - NLO normalised to data
 - RAPGAP DIR+RES fails
 - CDM does well
 - NLO even better

- 2-jet and 3-jet production at low x_{Bj} :
 - aim: check ME calculations for 2- and 3-jet production at NLO
 - conclusion: NLO (O($\alpha \alpha_s^2$), O($\alpha \alpha_s^3$)) calculations work well and is especially needed at low_ x_{Bi} when additional gluon radiation is highlighted
- Forward-jet production:
 - aim: check ME calculations at NLO and PS models in a region of phase space where additional gluon radiation and/or non-ordered PS are expected
 - conclusion: NLO (O($\alpha \alpha_s^2$)) below data, sometimes by factor 2; simple DGLAP fails but DGLAP with a resolved photon and CDM describe data well; CASCADE fails; when looking at forward-jet + dijet production, DGLAP with a resolved photon and CDM can be differentiated: CDM survives while DGLAP does not.
- 3- and 4-jet production at low x_{Bj} :
 - aim: check ME calculations at NLO and PS models by looking at jet topologies in regions of phase space where additional gluon radiation and/or non-ordered PS are expected
 - conclusion: NLO (O($\alpha \alpha_s^3$)) describes jet topology surprisingly well, but misses 18% of events with 3 or more jets, especially when 2 jets are forward jets; CDM is very good to high jet multiplicity and also describes the jet topology well.

- Why is CDM so good?
 - Number of radiated gluons is not that high any breaking of the ordering is fine (but RAPGAP DIR+RES doesn't work...!)
 - CDM has been tuned...
- Why is CCFM so bad?
 - CCFM needs better input (better unintegrated PDFs...). Can uPDFs be constrained by this data?
- What are the next steps in theory?
 - How far are we from a full BFKL calculation?
- What are the next steps in experiment?
 - Which analyses should still be done with HERA data?
 - What are the possibilities to measure forward jets at the LHC?

3-jets events with at least 1 forward jet

- x dependence
 - main discrepancy seen at low x with 2 forward jets
- η^{jet} and p_T^{jet} dependence

2 fwd + 1 cnt jets

alls

1 fwd + 2 cnt jets