

LEADING BARYON PRODUCTION at HERA

Lorenzo Rinaldi On behalf of H1 and ZEUS Collaborations

Motivations

- Large fraction of events with a Leading Baryon (LB)
- LB produced at small angle in forward direction: difficult detection
- Production mechanism still not clear: soft scale, alternative approach needed
- Interest in LB study for next experiments @ LHC
 - → absorptive corrections related to gap survival probability (diffractive Higgs, pile-up background...)

Results discussed in this talk:

- Leading Proton (LP) spectra in DIS → NEW
- Leading Neutron (LN) spectra in DIS and γp
- Dijet γp with a LN \rightarrow NEW
- Latest developments in theory
- Comparison with models

Leading baryon production in ep collisions

LB cross sections vs structure functions: (QCD-based approach)

$$\frac{d^{4}\sigma(x,Q^{2},x_{L},p_{T}^{2})}{dxdQ^{2}dx_{L}dp_{T}^{2}} = \frac{4\pi\alpha^{2}}{xQ^{4}} \left(1 - y + \frac{y^{2}}{2}\right) F_{2}^{LB(4)}(x,Q^{2},x_{L},p_{T}^{2})$$

Standard fragmentation

- LB from hadronization of p remnant
- Implemented in MC models (Cluster, Lund strings...)

Virtual particle exchange

 π , IR, IP, ρ ,.. LB also from p fragmentation in double dissociative diffraction

Leading baryon detectors

ZEUS Leading Proton Spectrometer (LPS)

- 6 stations each made by 6 Silicon-detector planes
- Stations inserted at $10\sigma_{\text{beam}}$ from the proton beam during data taking
- $\sigma_{x_1} < 1\% \sigma_{p_T^2} \sim \text{few MeV}^2$ (better than p-beam spread ~ 50 100 MeV)

H1 Forward proton spectrometer (FPS)

- 2 stations each made by 4 scintillating fibres hodoscopes planes
- θ_x = 5µrad θ_y =100µrad, Energy resolution 8 GeV
- Acceptance 500<E_p<780 GeV</p>

ZEUS Forward Neutron Calorimeter (FNC)

- 10λ lead-scintillator sandwich
- $\sigma/E = 0.65/\sqrt{E}$, Energy scale=2%
- Acceptance $\theta_n < 0.8$ mrad, azimuthal coverage 30%

ZEUS Forward Neutron Tracker (FNT)

• Scint. hodoscope @ 1 λ int, $\sigma_{x,y}$ =0.23cm, σ_{θ} =22 μ rad

H1 Forward Neutron Calorimeter (FNC)

- Lead-scintillator calorimeter @ 107m from I.P. + veto hodoscopes
- $\sigma(E)/E\approx 20\%$, neutron detection eff. 93±5%

Leading Proton: cross section vs x_L

Flat below diffractive peak

NEW LP results: LPS stations full set used

Cross section at low p_T² Agreement with photoproduction

LP: cross section vs p_T^2 and b-slopes

No strong dependence of b on x_L

LP: ratio to inclusive DIS

Structure function ratio

$$r^{LP(3)}(x,Q^{2},x_{L}) = \frac{F_{2}^{LP(3)}(x,Q^{2},x_{L})}{F_{2}(x,Q^{2})}$$
$$r^{LP(2)} = \frac{F_{2}^{LP(2)}(x,Q^{2})}{F_{2}(x,Q^{2})}$$

Information on LP production as a function of DIS variables

 $Q^{2}=4.2 \text{ GeV}^{2}$

Test of vertex factorization

17-18% of DIS events have a LP with $0.5 < x_L < 0.92$, almost independently of x and Q²

No strong dependence on x and Q^2 when integrating over $0.5 < x_L < 0.92$

No clear evidence of vertex factorization violation

 $\Gamma^{LP(2)}$

 $F_2^{LP}=r^{LP}*F_2$ (ZEUS-S parametrization used) F_2^{LP} : same dependence on x and Q² as F_2

Comparisons to Reggeon exchange model

Predictions good in shape but: x_L slighty underestimated b-slope slightly overestimated

- _____ Szczurek et al., Phys Lett B428, 383 (1998) ____ Pomeron Reggeon πΔ
- **· —** πN

Leading Neutron: One-Pion-Exchange model

O.P.E. partially explains the LN production

$$\frac{d\sigma_{ep \to eXn}(W^2, Q^2, x_L, t)}{dx_L dt} = f_{\pi/p}(x_L, t) \cdot \sigma_{\gamma^* \pi}((1 - x_L)W^2, Q^2)$$

 $f_{\pi/p}(x_L,t) \propto \frac{-t}{(t-m_{\pi}^2)^2} (1-x_L)^{\alpha(t)} F^2(x_L,t) \qquad \text{and form factor } F^2(x_L,t)$ model dependent

Longitudinal momentum spectrum and p_T^2 slopes discriminate between different parametrizations of fluxes

Rescattering model and absorption

D'Alesio and Pirner

(EPJ A7(2000) 109)

Neutron rescatters on $\boldsymbol{\gamma}$ hadronic component. Absorption enhanced when

- π -n system size larger \rightarrow low x_L
- γ size larger \rightarrow photoproduction

Nikolaev,Speth and Zakharov (hep-ph/9708290)

Re-scattering processes via additional Pomeron exchanges (Optical Theorem)

Kaidalov, Khoze, Martin, Ryskin (KKMR)

(hep-ph/0602215, hep-ph/0606213)

Enhanced absorptive corrections (\rightarrow exclusive Higgs @ LHC), calculation of migrations, include also ρ and a_2 exchange (different $x_L \& p_T$ dependences)

LN: longitudinal momentum spectrum

• LN yield increases with x_L due to increase in phase space: $p_T^2 < 0.476 x_L^2$

 LN yield decreases for x_L→1 due to kinematic limit

LN: ratio yp/DIS

Data compared to OPE with absorption.

- Qualitatively similar to D'Alesio and Pirner (loss through absorption)
- \bullet Nikolaev,Speth and Zakharov model also shown: similar trend but weaker x_L dependence

W dependence:

σ~W^α, α($σ_{γp}$) ≠ α($σ_{γ*p}$)

 $W_{\pi}^{2}=(1-x_{L})W_{p}^{2} \rightarrow (1-x_{L})^{-0.13}$

absorption rate rescaled

Models in agreement with data

• LN yield in PHP < yield in DIS

 \rightarrow factorization violation

LN: KKMR absorption model

Kaidalov, Khoze, Martin, Ryskin:

- Pure π exchange (not shown) too high
- Absorption and migration effects reduce the LN yield and fit the data better
- Additional ρ and a_2 exchanges enhance the LN yield

LN: DIS cross section vs p_T^2 in x_L bins

 p_T² distributions well described by an exponential

$$\frac{1}{\sigma_{inc}} \frac{d^2 \sigma_{LN}}{dx_L dp_T^2} = a(x_L) \cdot e^{-b(x_L)p_T^2}$$

• Intercept $a(x_L)$ and slopes $b(x_L)$ fully characterize the x_L - p_T^2 spectra

LN: intercepts and slopes in DIS

$$\frac{1}{\sigma_{inc}} \frac{d^2 \sigma_{LN}}{dx_L dp_T^2} = a(x_L) \cdot e^{-b(x_L)p_T^2}$$

17

LN b-slopes: DIS & photoproduction comparison

LN b-slopes: comparison to models

OPE models:

- Dominant at 0.6<x_L<0.9</p>
- (non-) Reggeized flux, different form factors with different parameters
- none of the models seem to decribe the data well

KKMR model:

good description of the data considering absorption effects and ρ ,a₂ exchange contributions

LN spectrum: Q² dependence

$3 Q^2 bins + \gamma p$

 \bullet LN yield increases monotonically with Q^2

• consistent with absorption (larger Q² \rightarrow smaller γ)

Comparisons LP - LN data

Very similar behaviour $x_L < 0.85$ LP cross section almost twice LN

In particle exchange model: expected from isospin-1: LP=1/2LN Other exchanges needed (isoscalars)

ZEUS ZEUS (Prel.) 12.8 pb⁻¹ • ZEUS 40 pb⁻¹ $ep \rightarrow eXn$ $ep \rightarrow eXp$ $p_{\rm T}^2 < 0.5 \, {\rm GeV}^2$ p_T²<0.476 x_L² GeV² $Q^2 > 3 \text{ GeV}^2$ $\overline{O^2}>2 \text{ GeV}^2$ 45<W<225 GeV 45<W<225 GeV ⁰0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 XL

Slopes comparable $0.7 < x_L < 0.8$ where π exchange dominates

LN production compared to MC predictions

- Compare LN DIS distribution to MC models:
 - RAPGAP standard fragmentation
 - RAPGAP OPE
 - LEPTO standard fragmentation
 - LEPTO soft color interaction
- Both standard fragmentation fail
 - Too few n, too few x_L
 - b-slopes too low
- RAPGAP-OPE: close to data in shape but not in magnitude
- LEPTO-SCI: reasonable description of x_L spectrum and intercepts, bad slopes

Other models also fail (ARIADNE, CASCADE, PYTHIA, PHOJET)

Dijet γp with a LN

Presence of jets hard-scale

Naively, rescattering effects expected in resolved photoproduction:

Photon Remnant

ŝ

H1 data: ratios (jj+LN)/jj reasonably well described by photoproduction MC 23

Ratios (LN+jj)/jj

Model by Klasen and Kramer based on OPE

Ratios well described by NLO predictions

x_L spectrum:

Reasonable shape, NLO too high

Dijet production with a LN

ep→ejjnX vs ep→enX

Suppression observed in dijet+LN: Kinematic or absorption/rescattering?

Look at x_{BP}=1-(E+p_Z)/2E_p

→Fraction of proton beam energy available for particle production in the forward beampipe

Kinematic constraint: x_L<x_{BP}

The lower x_{BP} values in dijet- γp constrain the neutrons to lower x_L than DIS

Dijet with a LN

b-slopes No significant difference within errors

After reweighting x_{BP} , the x_L distributions of the two processes $ep \rightarrow ejjnX$ and $ep \rightarrow enX$ agree:

Mainly kinematic effect, no clear evidences of absorption

26

Summary

- LP spectra in DIS; well described by Reggeon-exchange model
- LP production as a function of DIS variables: no dependence observed
- LN production measured in DIS and γp
- LN characterized by rescattering and absorption effects: well reproduced by some models
- MC generators in general fail to reproduce the measured quantities → need to tune the generators
- Dijet- γ p with LN: suppression most probably due to kinematic effects.

HERA provided high precision measurements of leading baryon production.

Now it's time to work together with theory people and apply our knowledge to the next future physics

Rescattering model and absorption 1

Model 1: One pion exchange in the framework of triple-Regge formalism

Nikolaev,Speth & Zakharov

Re-scattering processes via additional pomeron exchanges (Optical Theorem)

(hep-ph/9708290)

(Kaidalov,) Khoze, Martin, Ryskin (KKMR)

Enhanced absorptive corrections (\rightarrow exclusive Higgs @ LHC), γ _____ calculation of migrations, include also ρ and a_2 exchange (different $x_L \& p_T$ dependences) (hep-ph/0602215, hep-ph/0606213) p _____

Rescattering model and absorption 2

Model 2: calculations from D'Alesio and Pirner in the framework of target fragmentation (EPJ A7(2000) 109)

more absorption when photon size larger (small Q²) → less neutrons detected in photoproduction
more absorption when mean π-n system size (<r_{nπ}>) smaller at low x_L
→ less neutrons detected at low x_L
more absorption → fewer neutrons detected with higher p_T² → larger b-slope expected in photoproduction

