High E_{τ} Jets and PDFs at HERA

Thomas Kluge, DESY Low x Workshop, Helsinki, 1 September 2007

- New Jet Measurements HERA
- Application in PDF fits
- Summary

Introduction

what are "high" E_{T} jets?

in this talk: ~7...100 GeV this (and appropriate kinematics) means thatwe are not interested in

- hadronisation
- multi parton interactions
- parton dynamics
- calibration headaches
-but in
 - plain perturbative QCD, DGLAP regime

typical jet selection:

inclusive k_T algorithm p_T recombination scheme, R=1.0 $-1.0 < \eta^{LAB} < 2.5$ $7 < E_T^{BREIT} < 50 GeV$

Motivation

Jet production in DIS and photo production

cross section depends on

- strong coupling α_S
- parton density functions of the proton
- QCD matrix elements

T.Kluge, High ET Jets.....

HERA Data Sets

IERA e+			0.0	23
p: (36.094			
en History			0	-X
Construction of the second	and the first of t			32
				72
12 13 14 15	16 17 18 1	9 20 21	22 23	(11)

- HERA switched off June 30, two periods:
- HERA I
 - jet analyes typically use ~60-100pb⁻¹
 - mostly published
- HERA II
 - preliminary results for (high energy) data set of ~320pb⁻¹
 - work ongoing to improve systematics, had. E-scale, luminosity

Inclusive Jets at High Q²

■ HERA I, e⁺p

NC DIS: 150<Q²<15000 GeV²

- exp. error ~5%, mainly due to hadronic energy scale and model dependence
- QCD does a good job describing the jet cross section
 - NLO perturbative prediction corrected for hadronisation, O(10%)
 - at highest Q² need to include also Z⁰ exchange, O(10%)

Inclusive Jet Cross Section

Phys.Lett.B(2007), hep-ex/0706.3722

Inclusive Jets at High Q²

similar results from ZEUS

both used in simultaneous fit of α_S

 $lpha_s(M_Z) = 0.1198 \pm 0.0019 \ ({
m exp.}) \pm 0.0026 \ ({
m th.})$

competitive precision and consistent with world average

plus: observation of asymptotic freedom from HERA jets alone

Inclusive Jets at High Q²

- jet cross section normalised to neutral current DIS
 - partial cancellation of experimental systematics
- significant improvement of exp. uncertainties with HERA II at high Q² and high E_T
- work ongoing for best hadronic calibration
 - HERA I: 2% scale unc.
 - HERA II: aim for <=1.5%
- at highest Q2 and ET data will still be statistically limited

T.Kluge, High ET Jets.....

Dijets at High Q²

HERA I + part of HERA II data: 209pb⁻¹

submitted to DIS07

T.Kluge, High ET Jets.....

Dijets at High Q²

dijets $125 < O^2 < 250 \text{ GeV}^2$ $250 < O^2 < 500 \text{ GeV}^2$ 0 $500 < Q^2 < 1000 \ GeV^2$ $1000 < Q^2 < 2000 \text{ GeV}^2$ 0.8 0.6 0.4 0.2 0 -1.5 -1 -0.5 $2000 < Q^2 < 5000 \text{ GeV}^2$ 0.8 log₁₀ξ 0.6 0.4 0.2 0_⊾ -2 -1.5 -1 -0.5 log₁₀ξ Still sizable gluon fraction, even at higher Q²

At higher ξ moderate scale uncertainty, in the order of the PDF uncertainty

Use this data in future PDF fits to constrain gluon at high x

T.Kluge, High ET Jets.....

Inclusive Jets at Low Q²

submitted to EPS2007 dσ/dE_T [pb/GeV] dơ/dE_T [pb/GeV] H1 prelim HERA-I H1 prelim, HERA-I 10³ 10³ NLO* $(1 + \delta_{had})$ NLO* $(1 + \delta_{had})$ extension of phase space PDF CTEQ6.1 (0.25 - 4.0) µ² 10² 10² eigenvectors to lower Q² possible? 10 10 here: 5...100 GeV² 50 Ε_τ [GeV] 10 10 50 E_T[GeV] (compared to $>150 \text{ GeV}^2$) s 0.3 0.2 0.1 0.3 Errors 0.3 0.2 0.1 0 -0.1 -0.1 -0.2 -0.2 -0.3 -0.3 50 E_T [GeV] 10 10 50 E_T [GeV] difficult, scale error large (and larger than PDF error) scale+hadronization PDF a^{NPO}/a^{PO} 2^{NLO}/α^{LO} k-factors rise strongly below $\sim 100 \text{GeV}^2$, 1.0 need NNLO! 0.5 67810 20 30 40 50 100 200 1000 2000 10000 Q^2/GeV^2 Q^2/GeV^2

T.Kluge, High ET Jets.....

Dijets in Photo Production

Phys.Rev.D, hep-ex/0706.3809

Dijets in Photo Production

ZEUS

Phys.Rev.D, hep-ex/0706.3809

- mean E_T of dijets shown for an resolved enriched sample
- none of the used photon PDFs describes the distribution
- all too flat at low mean E_{T}
- data should be used in new fits of the photon PDFs

PART II, Jets for PDF Fits

Jet Cross Section @ NLO for Fits

fastNLO

solution:

- separate and α_S and PDFs from rest
- store result in bins of x, partonic subprocess, scales,...
- use interpolation techniques for precision
- already in "Using PDF interpolation to solve the DGLAP equations" C.Pascaud, F.Zomer, LAL-94-42
- implemented e.g. in H1 EPJC 19(2001)289, ZEUS-JETS PDF, ...
- fastNLO: emphasis on efficiency and universality (ep,pp,pp)
- See http://projects.hepforge.org/fastnlo/ for calculations of 28 jet cross sections for TEVATRON, HERA, LHC, RHIC

with 8 x-bins: already 0.5% Precision only 10 x-bins: achieve goal of 0.1% precision

used

- stretching: x->sqrt(log₁₀(1/x))
- reweighting: $w(x)=x^{-3/2}(1-0.99x)^3$

fastNLO

TK, M.Wobisch, K.Rabbertz, hep-ph/0609285

Jets for PDF Fits

- having a prediction for jet cross section as function of α_S and PDF allows for straightforward fits by minimising χ²
 combine with inclusive NC/CC DIS data
 - state of the art for these is NNLO, not yet for jets $oldsymbol{\Im}$
- experimental systematics are correlated, use Hessian method = fitting the systematical parameters
- issue: theory/scale error important for jets
 - correlation of uncertainty between e.g. inclusive jets and dijets?
 - offset method (repeating fit for different scales) sensitive to fluctuations, maybe too conservative?

Global Fits

H1 95-97 incl. jet and dijet data, $\chi^2 = 14/32$ pts

- fastNLO is used by MSTW to include jet data from TEVATRON and HERA in their new fit
- quality of fit excellent, correlations of systematics have little effect for HERA jets

Global Fits

ZEUS-Jets PDF Fit

T.Kluge, High ET Jets.....

ZEUS-Jets

jets provide sizable reduction of gluon uncertainty at higher x

this gluon is compatible with global fits

Eur.Phys.J.C42:1-16,2005

T.Kluge, High ET Jets.....

Summary

- Wealth of new jet data from H1 and ZEUS available
- Only part of the HERA I jet data has been used in PDF fits now
- HERA II data will provide improved statistical and systematical precision
- Jets in PDF fits provide further constraints on gluon PDF at high x
- A general purpose NNLO program for jets at HERA is needed!

