Parton Densities and Determination of $\alpha_{\rm s}$ from ep Collisions

Lidia Goerlich

Institute of Nuclear Physics PAN

Cracow

1

Lake Louise Winter Institute 2007

- Deep Inelastic Scattering at HERA
- Structure Functions and Parton Densities
- > Determination of α_s
- > Summary and outlook

HERA at DESY: ep collider $\sqrt{s} = 319$ GeV, HERA | 130 pb⁻¹, HERA || longitudinally polarized e[±] 350 pb⁻¹ (so far), stops 2007 June 30

Deep Inelastic Scattering at HERA

Precise measurements of the scattered charged lepton (E_e scale at 1% level) and hadronic final state (E_h scale at 1 - 4% level) in the H1 and ZEUS detectors²

> Center of mass energy \sqrt{s} = 319 GeV

- Four momentum transfer Q² = -q² virtuality of the exchanged boson (0 < Q² < 10⁵ GeV²)
- Bjorken x = Q²/p·q Quark Parton Model - fraction of the proton momentum carried by the struck quark (10⁻⁶ < x < 1)</p>

HERA kinematic plane

Kinematics can be reconstructed from the scattered electron or/and hadronic final state

HERA – large range in x and Q^2

HERA - most important source of data on proton structure

Inclusive neutral current cross section

$$\frac{\mathrm{d}^2 \sigma_{\mathrm{NC}}(\mathrm{e}^{\mathrm{T}}\mathrm{p})}{\mathrm{dx} \mathrm{dQ}^2} \propto \mathrm{Y}_{\mathrm{+}}\mathrm{F}_{\mathrm{2}} + \mathrm{y}^2\mathrm{F}_{\mathrm{L}} \pm \mathrm{Y}_{\mathrm{-}}\mathrm{x}\mathrm{F}_{\mathrm{3}},$$

$$Y_{\pm} = 1 \pm (1 - y)^2$$

- \blacktriangleright F_2^{em} dominates in most phase space $F_2=F_2^{em} + \Delta(\gamma Z, Z)$ \blacktriangleright F_L contributes at high y... \blacktriangleright F_3 parity violating SF, important at high Q² (Q² > m_Z²), dominated by γZ interference

Structure functions $F_i \longrightarrow parton distribution functions (PDF)$

Quark-parton model **scaling**, no dependence of SF on Q² **PDF** probability to find a parton in a fast moving proton with a fraction x of the proton momentum

 $F_2^{em}(x,Q^2) = x \sum e_q^2 (q(x) + q(x)), \qquad F_L(x,Q^2)=0$

 $x F_3^{\gamma Z}(x, Q^2) \sim x \sum e_a a_a(q(x) - q(x)) \rightarrow \text{sensivity to valence}$ quark PDFs ⁴

Structure functions and QCD

- **▶** QCD processes lead to logarithmic scaling violations ($\partial F_2 / \partial \ln Q^2 \neq 0$)
- Factorization theorem: SF are convolution of universal scale-dependent PDFs $f_{a/p}(x, \mu_f^2)$ and process dependent calculable in pQCD (as power series of $\alpha_s(\mu_r)$) coefficient functions C_i^a

$$F_{i}(x,Q^{2}) = \sum_{a=g,q,\bar{q}} C_{i}^{a} \otimes f_{a/p}$$

Typical choice for renormalization and factorization scales $\mu_{\text{r}}{=}\mu_{\text{f}}{=}0$

> Evolution of PDFs in μ_f described in pQCD by the DGLAP equations

dominates at small Q^2 depends on α_s and gluon PDF

At leading order QCD processes BGF and QCDC give rise to scaling violations of F_2 and production of jets in the final state

$F_2(x,Q^2)$ measurements at HERA – textbook results

H1 + ZEUS + fixed target data

$$F_2^{em}(x,Q^2) \sim x \sum_q e_q^2 (q+\bar{q})$$

Strong constraint on u,u

$$\frac{\partial F_2}{\partial \ln Q^2} \tilde{\mathbf{q}} \alpha_{s} [P \otimes g + P \otimes F_2]$$

Good constraint on g and α_s

HERA I data measured with ~ 2-3% precision over huge kinematic range:

- strong scaling violation at low x
- very well described by QCD fits

HERA II – more data

(~3 times e⁺p, ~10 times e⁻p) → better accuracy at large Q² and x

Measurement of high-x NC cross sections at HERA

Limited DIS data on cross sections at high-x and high Q^2 (fixed target exp. F₂ up to x=0.75, H1 and ZEUS F₂ up to x=0.65) PDFs poorly determined at high-x

ZEUS – NC DIS cross sections up to x =1

Comparison to SM predict. at NLO (CTEQ6D)

Topology of high-x DIS event

High Q² – 100 % acceptance for a reconstr. of the scattered electron

Not too high x, measure x from jet measure $d^2\sigma$ / dx dQ^2

For x > x_{Edge} measure
$$\frac{\int_{x_{Edge}}^{1} \frac{d^2\sigma}{dx dQ^2}}{1 - x_{Edge}}$$
 7

At large Q² and large x HERA can disentangle quark flavours ⁸

Determination of parton densities at HERA

- **Parametrizaton of x dependence of PDFs at starting scale** Q_0^2 (constraints: sum rules, flavour composition of sea quarks, behaviour of the valence u and d quarks at low x ...)
- **Evolution of initial PDFs in Q² within NLO DGLAP formalizm**
- **Convolution of PDFs with coefficient functions** predictions for structure functions/cross sections
- Fit to measured structure functions/NC and CC cross sections (evaluation of correlated syst. errors by Offset (ZEUS) or Hessian (H1) method)

Analyses from the HERA data only

Low Q² NC inclusive $\sigma \longrightarrow$ low x sea and

High Q² NC&CC inclusive $\sigma \longrightarrow$ valence

g (from $dF_2/dlnQ^2$)

quark densities Jet production data ----- constrain the gluon at mid to high x

- Systematic uncertainties well understood
- No complications from nuclear corrections necessary for fixed target vFe and μD data
- No sensivity to higher twists
- No assumption on strong isospin

Inclusive DIS data \rightarrow gluon PDF contributes indirectly to the cross section, determined from scaling violation (dF₂/dlnQ²)

Direct contribution of the gluon PDF to jet cross sections (BGF) → inclusion of jet data in NLO QCD fits

Parton distributions

from NLO QCD fits of H1 and ZEUS:

- F2 data from own experiment
- CC cross sections (constr. on u, d at high x)
- ZEUS fixed target DIS data included to improve the precision of valence quarks PDFs
- H1 and ZEUS parton densities agree within uncertainties (also agreement with global fits CTEQ and MRST)
- Strong increase of gluon and sea quark PDFs at low x (reflects the rise of F₂)
- Different shapes of the H1 and ZEUS gluon densities (but gluon at low x and Q² not well constrained, also limited sensivity at high x)

QCD fits within single experiments **ZEUS-JETS and H1 PDF 2000**

Parton distributions

ZEUS-JETS fit

HERA data: **NC&CC** inclusive **DIS** cross sections + jet cross sections (inclusive jets in DIS and dijets in photoproduction (Q² = 0, $x_{\gamma} > 0.75$))

- reduced uncertainty of the gluon density in in the region 0.01 < x < 0.4 (factor ~2)
- H1 and ZEUS PDFs agree within uncertainties but some diffrences in shapes exist
- Differences due to different analysis methods and a difference at the level of the data sets
- Simultaneous determination of PDFs and α_s

QCD fits with HERA II polarized data

Electroweak and QCD analysis based on ZEUS-JET fit using inclusive DIS and jet data from HERA I and HERA II polarized e⁻ p NC&CC inclusive cross sections

EW paramters fixed to SM values

ZEUS-pol (with HERA II data) ZEUS-JETS (w/o HERA II data)

Determination of α_s at HERA

- $\succ \alpha_{s}(M_{z})$ determined at HERA from a variety of measurements
 - Scaling violation of F_2 (indirect sensivity to α_s)
 - Jet measurements (cross sections and jet properties, direct sensivity to α_s)
- $\succ \alpha_{s}(M_{z})$ values are all in good agreement
- > Combined α_s (M_Z) value determined to NLO

 $\alpha_s = 0.1186 \pm 0.0011(exp) \pm 0.005(th) (H1 + ZEUS)$

- Compatible with the world mean 0.1182 ± 0.0027 (Bethke 2004)
- With competitive precision
- Dominant theoretical error
- Included in a more recent world average
 - 0.1189^{\pm} 0.0010 (Bethke 2006)

The α_s (M_z) values from H1 and ZEUS analyses contributing to the HERA average in comp. with the world average (Bethke 2004)

th. uncert.

0.1

 α_{s} (M₇) extracted from different. jet cross sec. $d\sigma/dE_{TB}$ and $d\sigma/dQ^2$ measured in Breit Frame

th. uncert.

α_{s} determination from jets

α_s from event shapes

- Variables calculated from the 4-vectors of all hadronic final state particles describing topological features of DIS events
- Larger statistics compared to jet samples due to semi-inclusive nature of ev. shapes
- Reduced exp. systematic uncertainties from hadronic energy scales
- Larger hadronization effects

QCD description : NLO(α_s^2)+ soft gluon resummation at NLL

Hadronization : Dokshitzer-Webber **power corrections** (PC, α_0 – effective strong coupling constant in the infrared regime)

Summary & outlook

- Data from HERA are fundamental to our understanding of the partonic composition of the proton and of QCD
- Parton density functions extracted from HERA data only with the precision of a few % over most of the x range
- Determination of α_s from scaling violation and jet data compatible and competitive with the world average
- Precise measurements of PDFs at HERA important for predicting standard QCD cross sections at LHC

Expected improvement in parton density determination:

- higher precision of inclusive cross section measurements (HERA | + HERA || data)
- combination of H1 + ZEUS experimental data
- direct measurements of longitudinal structure function $F_L \sim \alpha_s xg(x)$ (low energy run $E_p = 460 \text{ GeV}$, $L \sim 10 \text{ pb}^{-1}$)
- inclusion of charm and beauty data (F₂^{cc} and F₂^{bb}) in QCD fit
- NNLO QCD fits