La Thuile 2007, M. Ruspa

Les Rencontres de Physique de la Vallee d'Aoste La Thuile, Aosta Valley - Italy, March 4th-10th 2007

Diffractive parton densities and factorization tests at HERA

Marta Ruspa, Univ. Piemonte Orientale, Novara (ITALY)

- Diffraction at HERA
- Inclusive diffractive measurements and diffractive PDFs
- Diffractive final states: jets and open charm

Diffractive DIS at HERA

HERA: ~ 10% of low-x DIS events are diffractive

Standard DIS

Probe structure of proton \rightarrow F₂

Probe structure of color singlet exchange (IP) $\rightarrow F_2^D$

Diffractive DIS at HERA

- Q^2 = virtuality of photon =
 - = (4-momentum exchanged at e vertex)²
- t = (4-momentum exchanged at p vertex)²
 typically: |t|<1 GeV²
- W = invariant mass of γ -p system
- M_{X} = invariant mass of γ -IP system
- x_{IP} = fraction of proton's momentum
 taken by IP
- B = Bjorken's variable for the IP
 = fraction of IP momentum
 carried by struck quark
 - = x/x_{IP}

Diffractive DIS

Probe structure of color singlet exchange (IP) $\rightarrow F_2^D$

Diffractive event selection

QCD factorization in hard diffraction

Diffractive DIS, like inclusive DIS, is factorizable:

[Collins (1998); Trentadue, Veneziano (1994); Berera, Soper (1996)...]

universal partonic cross section

 $\sigma (\gamma^* p \rightarrow Xp) \approx f_{i/p}(z,Q^2,x_{IP},t) \times \sigma_{\gamma^* p}(z,Q^2)$

Diffractive Parton Distribution Function (dPDF), evolve according to DGLAP

IP flux

 $f_{i/p}(z,Q^2,x_{IP},t)$ express the probability to find, with a probe of resolution Q^2 , in a proton, parton i with momentum fraction z, under the condition that the proton remains intact, and emerges with small energy loss, x_{IP} , and momentum transfer t - diffractive PDFs are a feature of the proton

■ Assumption → proton vertex factorization:

 $\sigma (\gamma^* p \rightarrow Xp) \approx f_{IP/p}(x_{IP},t) \times f_{i/p}(z,Q^2) \times \sigma_{\gamma^* p}(z,Q^2)$

different experiments

6

Positive scaling violations up to high β \rightarrow lots of gluons in the diffractive exchange

Diffractive Parton Density Functions

Diffractive Parton Density Functions

- H1 DPDFs Fit A & B
- Well constrained singlet
- Weakly constrained gluons

(especially at high values of z)

z = fractional momentum of the diffractive exchange participating to the hard scattering

QCD factorization tests in hard diffraction

Diffractive dijet production in DIS

z_{IP} = fractional momentum of the diffractive exchange participating to the hard scattering

■ z_{IP} distribution is the most sensitive to gluon dPDFs \rightarrow difference between fit A and B at high z_{IP}

→ Data agree with NLO predictions and support factorization

statistics sufficient to make combined QCD fit to inclusive and dijets data

→ Fit A uncertainty not shown

La Thuile 2007, M. Ruspa

Combined fit to inclusive and dijet data

 combined fit constrains quark and gluon densities over a wide range (0.05 < z_{IP} < 0.9)

 uncertainty on gluon dPDFs reduced

Diffractive charm production in DIS

a Thuile 2007, M. Ruspa

charm contribution to F₂^D comparable with charm fraction in inclusive DIS

Transition from ep to hadron-hadron

Factorisation not expected to hold in pp, pp scattering - indeed it does not: factor 10 normalization discrepancy when HERA dPDFs are extrapolated to Tevatron \rightarrow understood in terms of (soft) rescattering corrections of the spectator partons [e.g. Kaidalov, Khoze, Martin, Ryskin]

At HERA the resolved photon in photoproduction (PhP) behaves like a hadron:

(k')

(a)

XIP

Diffractive charm production in PhP

 \rightarrow No evidence of factorization breaking but large NLO uncertainties and limited statistics

Diffractive dijet production in PhP

Direct enriched $x_v > 0.75$ Resolved enriched $x_v < 0.75$ ZEUS ZEUS ° ۱.5 (Sp) / ا / (qc)^{NUX} 1.5 1.0 ą (do) data (b) 0.4 0.20.33 0.46 0.59 0.72 0.850.2 0.33 0.46 0.59 0.72 0.85 0.005 0.01 0.015 0.02 0.025 0 1.5 1.5 1.5 1.0 1.00.5 0.5 0.50.2 0.6 0.8 0.2 $E_{T}^{13.5}$ 15. E_{T}^{jet1} (GeV) 0.6 0.8 11.5 15.5 0.47.5 9.5 1.5ZEUS (prel.) 99-00 1.5 Energy scale uncertainty 1.0 $NLO \otimes had$. ----- NLO / (NLO ⊗ had.) R=1, H1 2002 fit (prel.) -1.5 -1 -0.50 0.51 1.5 $x_{z}^{otxx} < 0.75$ ŋ^{jeli} -1.5 -1 -0.50 0.51 1.5 n

 \rightarrow Data described in shape by NLO QCD predictions, but suppression factor common for both direct and resolved components

1.5

0

1.5

1.3

7.5

 $x_{u}^{otox} \ge 0.75$

0.005 0.01 0.015 0.02 0.025

13.5

E_x^{j=1} (GeV)

11.5

Energy scale uncertainty

R=1, H1 2002 fit (prel.)

ZEUS (prel.) 99-00

 $NLO \otimes had$.

----- NLO / (NLO ⊗ had.)

15.5

Summary

- Hard diffraction well understood in terms of QCD
- At HERA 2 experiments, different selection methods, many final states
- New dPDFs extracted from inclusive data available to test hard scattering factorization
 - inclusion of dijet data in the fits provides a much better constraint of the gluon density at high z
- Diffractive charm and dijet DIS data consistent with NLO predictions based on dPDFs from inclusive data → support factorization
- Diffractive dijet PhP data: no evidence of a suppression for the resolved component
- Diffractive charm PhP data: QCD factorization holds (but large NLO uncertainties)