Parton densities in the proton and α_{S} at HERA

Leif Jönsson Lund University

Outline of the talk:

- Basic concepts
- Parton densities and structure functions
- •Pdf's at high x
- Polarization measurements
- F₃
- •Determination of α_s
- combined fits
- inclusive jets
- multijets
- jet radius

• Summary

Deep Inelastic Scattering

 $Q^2 = -q^2$: the resolution power of the photon $x = Q^2/(2p \cdot q)$: the Bjorken scaling variable (the momentum fraction of the scattered parton in QPM events) $y = (p \cdot q)/(p \cdot k)$: the inelasticity (the E_{γ}/E_e fraction transferred by the photon in the proton rest frame) $s = (p+k)^2$: total c.m. energy squared $Q^2 = s \cdot x \cdot y$

The cross section may be factorized:

$$\sigma = \left[\sum_{i=g,q,\bar{q}} \int dx \, f_i(x,\mu_f,\underline{\alpha}_s(\mu_f)) \, \hat{\sigma}_{pQCD}(x,\mu_f,\mu_r,\underline{\alpha}_s(\mu_r))\right] (1+\delta_{had})$$

 $\hat{\sigma}_{pQCD}(x, \mu_f, \mu_r, \underline{\alpha}_s(\mu_r))$: the hard scattering cross section (analytically calculable) $f_i(x, \mu_f, \underline{\alpha}_s(\mu_f))$: the parton density function (determined experimentally) $(1 + \delta_{had})$: hadronization corrections (estimated from MC calculations) μ_f : the factorization scale (scale used for the parton evolution) μ_r : the renormalization scale (scale used for the expansion of α_5)

Experimental measurement

From experimental measurements of cross sections the structure functions of the proton can be extracted:

$$\frac{\mathrm{d}^2 \sigma_{\mathrm{NC}}^{e^{\pm} p}}{\mathrm{d}x \mathrm{d}Q^2} = \frac{2\pi\alpha^2}{xQ^4} \left[\left(1 + (1-y)^2 \right) \tilde{F}_2(x,Q^2) - \frac{y^2}{2} \tilde{F}_L(x,Q^2) \mp \left(y - \frac{y^2}{2} \right) x \tilde{F}_3(x,Q^2) \right]$$

The structure functions are related to the parton densities:

$$F_2 = \frac{Q^2}{4\pi\alpha^2} (\sigma_L + \sigma_R) = x\Sigma e_q^2 (q + \overline{q})$$

is probing the quark content of the proton

$$F_L = \frac{Q^2}{4\pi\alpha^2} \sigma_L \propto xg \quad \text{(longitudinally polarized photons)}$$

is probing the gluon content of the proton

$$x \tilde{F}_3(x,Q^2)$$
 gives the γZ interference, important at high Q^2

 F_2 is dominating in most of the kinematic region covered by HERA. $F_L/F_2 \sim 0.2$ at high y.

A structure function gives the probability to find a parton carrying a fraction x of the proton momentum if the proton is probed at some scale (e.g. Q^2)

Scaling violation

For scattering against point-like quarks, scaling is expected i.e. F_2 should not depend on the scale e.g. Q^2 . However, clear experimental evidence for scaling violation is observed. This effect is related to the resolution of the probe (the photon).

 $\Rightarrow dF_2/dlnQ^2 \sim \alpha_s xg$

⇒ The gluon density can be determined from scaling violation

The pdfs are determined through global fits to various experimental data, at a smallest scale, Q_0^2 , at which perturbative calculations are still expected to be valid. The DGLAP evolution can be used to define the pdf at an arbitrary Q^2 .

Kinematic range

Pdf's at high x

The experimental challenge: the scattered quark proceeds close to the beam pipe

- \bullet The scattered electron was used to reconstruct Q^2
- The energy and angle of the jet used to calculate x
- In case of no reconstructed jet $\Rightarrow x_{edge} < x < 1$

Generally good agreement with NLO calculations Data tend to be slightly high in the highest x-bins Х

Measurements with polarized e-beams

 F_2 and F_3 contain terms, on γZ interference and Z exchange, which depend on the e-beam polarization

$$\tilde{F}_{2} = F_{2} + k(-v_{e} \mp Pa_{e})xF_{2}^{\gamma Z} + k^{2}(v_{e}^{2} + a_{e}^{2} \pm Pv_{e}a_{e})xF_{2}^{Z}
x\tilde{F}_{3} = k(-a_{e} \mp Pv_{e})xF_{3}^{\gamma Z} + k^{2}(2v_{e}a_{e} \pm P(v_{e}^{2} + a_{e}^{2}))xF_{3}^{Z}$$

where the P-terms wontain the parity violation

Measure the cross section asymmetry for left- and right handed e[±]p scattering

$$A^{\pm} = \frac{2}{P_{\mathrm{R}} - P_{\mathrm{L}}} \cdot \frac{\sigma^{\pm} \left(P_{\mathrm{R}}\right) - \sigma^{\pm} \left(P_{\mathrm{L}}\right)}{\sigma^{\pm} \left(P_{\mathrm{R}}\right) + \sigma^{\pm} \left(P_{\mathrm{L}}\right)}$$

A⁺ and A⁻ of opposite signs; dA = A⁺-A⁻ \approx 0 for low Q²; and \neq 0 for high Q²

At high Q^2 the NC cross sections for e⁺p and e⁻p scattering are different Results on measured cross sections and on the structure function xF_3 have been compared to SM predictions

Results:

Data from the two experiments are consistent and in good agreement with SM predictions

F₃

• xF₃ is extracted from the unpolarized reduced cross section

$$\tilde{\sigma}^{e^{\pm}p} = \frac{xQ^4}{2\pi\alpha^2} \frac{1}{Y_+} \frac{d^2\sigma(e^{\pm}p)}{dxdQ^2} = F_2(x,Q^2) \mp \frac{Y_-}{Y_+} xF_3(x,Q^2) \quad \text{where} \qquad Y_{\pm} \equiv 1 \pm (1-y)^2$$
$$xF_3(x,Q^2) = \frac{Y_+}{2Y_-} (\tilde{\sigma}^{e^-p} - \tilde{\sigma}^{e^+p})$$

• F_3 is dominated by the γZ interference • It measures the difference in the quark $\Psi_{0.2}^{\circ}$ and antiquark momentum distribution

$$xF_3^{\gamma Z} = 2x \sum_q (e_q a_q)(q - \bar{q}) = 2x(2u_v + d_v)$$

Data comprise in total 478.8 pb⁻¹ from the HERA II running

Due to the weak dependence of F_3 on Q^2 data has been: • transformed into one Q^2 value of 1500 GeV² • combined for the two

• combined for the 1 experiments

F₃

Determination of α_s

•Use various parametrization of the proton pdf's to perform NLO calculations for different values of $\alpha_{s}(M_{z})$

• Using different sets of pdf's gives an estimate of the correlations in the NLO calculations

 \bullet Parametrize the $\alpha_{S}(M_{Z})$ dependence of the measured variable d\sigma/dA according to:

 $d\sigma/dA = C_1 \cdot \alpha_s(M_Z) + C_2 \cdot \alpha_s^2(M_Z)$

- \bullet Use the curve to convert the measured do/dA into an $\alpha_{S}(M_{Z})$ value
- The errors in the measurement relates to the errors in $\alpha_{\rm S}(M_Z)$ via the slope of the curve
- \bullet Use the Renormalization Group Equation to extract the 'running' α_{S}

Measurement of α_s from combined fits

H1: QCD fit to the combined H1 and BCDMS (fixed target) data sets on F_2

 $\Rightarrow \quad \alpha_{\rm s}(M_Z) = 0.1150 \pm 0.0017 \stackrel{+0.0009}{_{-0.0005}}_{exp.} model$

ZEUS: QCD fit to F_2 and jet data (inclusive jets in NC DIS + dijets in photoproduction)

 $\Rightarrow \alpha_{s}(M_{Z})=0.1183\pm0.0007\pm0.0022\pm0.0016\pm0.0008$

uncorr. corr. norm. model

The jet data contribute significantly to constrain the gluon density, which leads to a much more precise determination of α_{s}

Measurements of $\alpha_{\rm S}$ from inclusive jets at high Q^2

H1: $\alpha_s(M_Z)$ extracted from $d\sigma/dE_t$ in four bins of Q² (150 < Q² < 5000 ; total 20 data points) ZEUS: $d\sigma/dQ^2$ for Q² > 500 GeV² has been used to extract $\alpha_s(M_Z)$

Results:

- Consistent with world average
- Theory error dominates

Measurement of α_s from multijets

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.14

0.13

0.12

0.11

0.1

0.09

10¹

- - -

 $(d\sigma/d\Omega^2)_{trijet}$ / $(d\sigma/d\Omega^2)_{dijet}$

 $\alpha_{\rm s}(\rm M_{z})$

Use the ratio between 2- and 3-jet events to measure α_s .

Advantage: cancellation of uncertainties Disadvantage: small statistics

a)

Data: 82 pb⁻¹ M_{2jet} and $M_{3jet} > 25 GeV$ $10 < Q^2 < 5000 GeV2$ 0.04 < y < 0.6 $-1 < \eta_{lab} < 2.5$ NLO QCD: NLOJET++(CTEQ5M)

Theoretical Uncertainty World average: 0.1182 ± 0.0027

10²

10³

Q² (GeV²)

Measurement of α_s from multijets

Results:

Zeus: $\alpha_s(M_Z) = 0.1179 \pm 0.0013(\text{stat.})^{+0.0028}_{-0.0046}(\text{exp.})^{+0.0064}_{-0.0046}(\text{th.})$ H1: $\alpha_s(M_Z) = 0.1175 \pm 0.0017(\text{stat.}) \pm 0050(\text{exp.})^{+0.0054}_{-0.0068}(\text{th.})$

Jet radius studies

The jet cross section is measured as a function of the jet radius, R, in the k_T algorithm

Data: 81.7 pb⁻¹ $Q^2 > 125 \text{ GeV}^2$ $|\cos \gamma_h| < 0.65$ $E_{T,jet} > 8 \text{ GeV}$ (Breit frame) $-2 < \eta_{jet} < 1.5$ (Breit frame)

NLO calculations to order α_s^2 , including hadronization corrections, provide good description of $d\sigma/dE_{T,jet}$ (and $d\sigma/dQ^2$) for all jet radii

 $\alpha_{\rm S}$ extracted from the $d\sigma/dQ^2$ for Q^2 > 500 GeV², using R=1 in the k_T algorithm gives the smallest uncertainty

Energy scale dependence extracted from $d\sigma/dE_{T,jet}$ with R=1

Summary on α_s

Summary

On PDF's:

- High precision F_2 data over almost 5 orders of magnitude in x_{B_1} and Q^2 .
- The structure function xF_3 , sensitive to the valence quark distribution, has been measured.
- \bullet Measurements with polarized beams have provided clear evidence of parity violation in NC interactions at high $Q^2.$
- The standard model gives excellent agreement with data.

On α_{s} :

- \bullet Different methods have been used to determine α_{S} from HERA data.
- All measurements consistent with each other and the world average.
- The precision is competitive with results from e^+e^- data.
- NLO calculations contribute the dominating error.
- NNLO calculations needed.
- New data from HERAII will improve the precision even more.