

Diffraction phenomena are interesting now?

Deeply Virtual Compton Scattering (DVCS)

Q² [GeV²]

• information on GPDs

Generalized Parton Distributions (GPDs)

GPDs describe the correlation between two partons (x_1, x_2) which differ by longitudinal (x_1-x_2) and transverse (t) momentum at the given Q^2

Total angular momentum carried by partons in the nucleon : Ji's sum rule (1997)

$$J^{q} = \frac{1}{2}\Delta\Sigma + L^{q} = \frac{1}{2}\int GPD_{q} \cdot xdx$$

Total Angular Momentum of u- and d- in Proton

<u>JLAB:</u> e-beam polarized cross section difference measured on deuteron and proton target.

$$d\sigma(\vec{e},n) - d\sigma(\vec{e},n) = \mathcal{P}(J^{u},J^{d})$$
$$J^{q} = \frac{1}{2}\Delta q + L^{q}$$

HERMES 99

 $\Delta u = 0.57 \pm 0.04$ $\Delta d = -0.25 \pm 0.08$ $\Delta s = -0.01 \pm 0.05$

sums up to about 30% of nucleon spin

<u>HERMES:</u> transverse proton spin asymmetry with unpolarized e-beam is sensitive to J^u and J^d at high x

L^q adds about 30% to the proton spin

Tomography picture of proton

Scanning of the nucleon at different x is a unique feature of diffractive reactions

GPDs constrained to the Pauli and Dirac form factors of proton

Tomography plots for u- and d- quarks at high x:

M. Diehl, T. Feldmann, R. Jakob and P. Kroll, Eur. Phys. J. C 39, 1 (2005).

Proton tomography with DVCS at HERA

A measurement of *t*-dependence of DVCS cross section at different values of Q², W

 $< r_T > = \sqrt{b} \approx 0.65$ fm dominated by sea and gluons (low-x @ HERA)

experimental input to GPDs parameterization as function of t

Diffractive Vector Meson Production

No extra α_{em} supression : $\sigma_{\rho} \sim 10 \cdot \sigma_{DVCS}$ VMs have larger signal to background ratio than DVCS

VM wave function involved : theoretically not that clean as DVCS

Total $\gamma^* + p \rightarrow V + p$ cross section as function of Q^2

The cross sections were scaled by factors, according to the quark charge content of the vector meson

 $\rho: \omega: \varphi: J/\Psi = 1:9:9/2:9/8$

Approximated with

$$\sigma(Q^2) \propto 1/(Q^2 + M^2)^n$$

DVCS : $n \approx 1.5$ VM : $n \approx 2.5$ extra (Q²+M²)⁻¹ from the Vm wave function

Details:

```
Fit to whole Q^2 range gives bad \chi^2/dof
```


• striking universality in vector meson production.

• The Q2 dependence of $\sigma(\gamma^* p \rightarrow \rho p)$ cannot be described by a simple propagator term.

$\sigma(\gamma^* + p \rightarrow V + p)$. Energy dependence.

process becomes hard as Q²+M² -scale becomes larger.

Cross section rises with energy.

σ(W) ~ W δ

the exponent is Q^2+M^2 scale dependent

 $\delta = \delta_0 + 0.25 \ln(\mathbf{Q}^2 + \mathbf{M}^2)$

$\sigma(\gamma^* + \rho \rightarrow V + \rho)$. Energy dependence.

VM@HERA help to improve PDF parameterizations

High sensitivity to gluon density at low-x

 $d\sigma/dt(\gamma^*+p \rightarrow V+p)$. t- dependence.

$$\frac{d\sigma}{dt} \propto F_V^2 F_p^2 \propto (1+a_V t)^{-4} (1+a_p t)^{-4} \Longrightarrow \begin{cases} \exp(b \cdot t) - \text{at low t, } b=4a_V + 4a_p \equiv b_V + b_p \\ 1/|t|^n & -\text{at large t, } (4 < n < 8) \end{cases}$$

t- dependence is defined by Form Factors (F_VF_p)

Geometric picture:

$$\boldsymbol{b} = \boldsymbol{b}_p + \boldsymbol{b}_V$$

Size of the scattered vector meson is getting smaller with $Q^{2}+M^{2}$ scale

$$b_V \propto \frac{1}{Q_2 + M_V^2}$$

The exponential slope of the t distribution decreases with Q2 and levels off at about b = 5 GeV-2.

$d\sigma/dt(\gamma^*+p \rightarrow V+p)$. Interplay of t, Q^2

Alternative approach: Take as a scale $Q^2 + M^2 - t$

The exponential slope of the t distribution does not change with Q2

$d\sigma/dt(\gamma^*+p \rightarrow V+p)$. Interplay of t, W

 $\frac{d\sigma}{dt} \propto \exp(b_0 t) \cdot W^{4\alpha(t)-4} = W^{4\alpha(0)-4} \cdot \exp(bt); \quad b = b_0 + 4\alpha' \ln(W)$

 α ' determines the growth with energy of the transverse extension of the scattering system and <u>characterizes the confinement forces in QCD</u>

Access to α' only in diffraction

Interplay t and W "coded" in GPDs

Effective Pomeron Trajectory $\gamma p \rightarrow V p$

$$\frac{d\sigma}{dt} \propto \exp(b_0 t) \cdot W^{4\alpha(t)-4}$$

$$\alpha(t) = \alpha(0) + \alpha' \cdot t$$

 ρ^0

 $\alpha(0) = 1.093 \pm 0.008$ $\alpha' = 0.116 \pm 0.05$

Elastic ρ^0 photoproduction (Q²+M²) = 0.6 GeV²

 $a(0)(\gamma p) \approx \alpha(0)(pp)$

But....

 $\alpha'(\gamma p) \approx \frac{1}{2} \alpha'(pp)$

Two different soft Pomeron trajectories?

 α ' reflects the diffusion of partons in impact parameter, b_t, plane during the evolution in rapidity $\sim \ln(s)$

Size of 2 proton system in pp scattering grows twice faster with s than a single proton in γp-scattering?

Effective Pomeron Trajectories $\gamma p \rightarrow V p$

As the scale gets harder the intercept grows

Diffractive dissociation processes

SD: one of colliding particle dissociates DD: *t*- measurement is not possible

What is the diffraction pattern?

A class of reactions with nonexponentially suppressed large rapidity gaps is operationally termed diffractive reactions (Bjorken 1994)

Extraction of Diffractive Parton Densities at HERA

Factorization breaking at HERA

Rapidity Gap Survival Probability

 T^2 – suppression of strong bremsstrahlung when two colour charged gluons 'annihilate' into a heavy object (Sudakov form factor)

For higher M the suppression T^2 is higher *(calculated in pQCD)*

*S*² - *probablity that rapidity gaps survive against population by secondary hadrons from soft rescattering (responsible for non-factorization).*

For higher collision energy the suppression S² is higher (soft process, large uncertainty)

LHC: for
$$M \approx 100 \ GeV \implies S^2 \approx 0.03$$
; $\frac{\sigma^{excl}}{\sigma^{incl}} \approx 10^{-4}$

S² suppression at works

First rapidity gap selects event topologies without soft rescatterings (suppression!)

...but the next gap in the same event is for free!

Missing mass with proton tagging:

Total weight : 12,508. Oversill dissetter: 15,00 m Oversill length : 21,00 m

dipole

roman pots

p

p

roman pots

Exclusive Higgs boson production at LHC

missing mass method

 missing mass method
 high mass resolution (2÷4 Gev)

suppression of bb-pair production
high S/B ratio

Rapidity gap suppression 📼 Low cross section

How large is the rapidity gap suppression? This is tested at TEVATRON:

- exclusive χ_c production $(p + p \rightarrow p + \chi_c + p)$
- exclusive *di-jet* production $(p + p \rightarrow p + jet-jet + p)$
- exclusive $\gamma\gamma$ production ($p + p \rightarrow p + \gamma\gamma + p$)

Central Exclusive χ_c production at CDF

Use the decays $\chi_c \rightarrow J/\Psi(\mu\mu)\gamma$ within |y|<0.6 central detector 10 events $J/\Psi+\gamma$ found in the CDF detector and nothing else OBSERVABLE

If assume all 10 events are $\chi_c(0^{++})$

Upper limit of $49 \pm 18(stat) \pm 39(syst)$ pb

to be compared with prediction of **70** pb for |y|<0.6 (Khoze, Martin, Ryskin, 2001; uncertainty factor 2÷5)

- small fraction of CDF statistics used in analysis
- needs for account of the $\chi_{\rm c}(2^{++})$ state

Since $\sigma \sim \Gamma_{gg}$, $\Gamma(2^{++})/\Gamma(0^{++}) \approx 0.13$ But $BR(\chi \rightarrow J/\Psi_{\gamma})$: $BR(2^{++})/BR(0^{++}) \approx 20$

One expects about equal contributions from 0++ and 2++ states

Central exclusive di-jet production at CDF

Central exclusive $\gamma\gamma$ production at CDF

Lumi = 532 pb^{-1}

Search for exclusive $\gamma\gamma$ $E_T(\gamma) > 5 \ GeV \ and \ |\eta| < 1$ \checkmark 3 candidate events found \checkmark 1 (+2/-1) predicted from ExHuME MC \succ estimated ~1 bgd event from $\pi^0 \pi^0$, $\eta \eta$ If assume 3 events are DPE $\gamma\gamma$

Upper limit $\sigma < 410$ fb

What Else?

$$pp \rightarrow pp+\gamma+\rho^0$$

Similarity to VM-production at HERA

$$\sigma(\gamma \rho^0) \approx 10 \cdot \sigma(\gamma \gamma)$$

FP420 project at LHC

MSSM Higgs exclusive production at LHC

For high $tan(\beta)$ the WW channel is suppressed by $H \rightarrow bb$, but the cross section is enhanced.

- solution solution for clean environment to isolate b-jets exclusive production
 - Spossibility to separate A and H,h bosons (A is suppressed in DPE)
 - \leq about <u>1000 proton tagged events</u> are expected for 30 fb⁻¹ luminosity

Exclusive H production – discovery channel in certain MSSM scenarios

Summary

- Significant progress in the Experiment and Theory of diffractive processes during last years
- The way to go:
 - Experiment: to make precision measurements (DVCS@high-x, α'@HERA, diffractive exclusive reactions @TEVATRON)
 - Theory: to provide a consistent model for diffraction at all scales
- Diffraction is a powerful instrumental tool in particle physics
- Good luck for FP420 initiative @LHC!

DVCS. Beam Charge Asymmetry at HERA

Effective Pomeron Trajectory $\gamma p \rightarrow V p$

$$\alpha(t) = \alpha(0) + \alpha' \cdot t$$

 $\alpha(0) = 1.093 \pm 0.008$

Double DVCS

Deep Virtual Photon Lepton Pail Production

$e + p \rightarrow e' + p + e^+e^-$

Scale of the process - $Q^2 + M^2$