Implications of HERA measurements for LHC

M. Diehl

Deutsches Elektronen-Synchroton DESY

13 August 2007

- 1. Structure functions and parton densities
- 2. Diffraction
- 3. Summary

(with apologies) will not cover many detailed studies of final state: jets, charm and bottom production, multiple interactions, ...

detailed recent overview \rightarrow 3rd HERA/LHC Workshop, March 2007 http://indico.cern.ch/conferenceDisplay.py?confId=11784

Thanks to: H. Abramowicz, J. Bartels, O. Behnke, L. Dixon, C. Gwenlan, H. Jung, M. Klein, G. Kramer, S. Moch, L. Motyka

Structure functions and parton densities ••••••••••

H1+ZEUS, Moriond 2004

Diffraction 0000000000 Summary O

- chief discovery of HERA: steep rise of proton structure function
- ► insight into QCD dynamics → many theory developments
- ▶ fits of parton densities (PDFs) → parton luminosities @ LHC
- 2 aspects:
 - precision
 - physics of small-x gluons and sea

Impact of PDF uncertainties on LHC

example processes

- Higgs production
- ► W[±], Z production possible luminosity monitors
- most PDFs now with errors
 - reflect error propagation fitted data
 - \rightarrow PDF parameters
 - not uncertainties from theory, parameterization, data selection, ...

Impact of PDF uncertainties on LHC

example processes

- Higgs production
- ► W[±], Z production possible luminosity monitors
- most PDFs now with errors
 - ▶ reflect error propagation fitted data
 → PDF parameters
 - not uncertainties from theory, parameterization, data selection, ...

Higgs production

A. Djouadi, S. Ferrag, hep-ph/0310209

M. Diehl

Main constraints on low-x gluon density

► scaling violations in $F_2(x, Q^2)$ cross talk gluons \leftrightarrow sea quarks Main constraints on low-x gluon density

 inclusive charm production: F₂^{cc} significant changes in theory used by global parton analyses

Different schemes:

- FFNS (fixed flavor number):
 - $n_f=3~~{
 m PDFs}$ for light q and $ar{q}$
 - $c,\,\bar{c}$ only from fixed-order hard scattering
 - \blacktriangleright misses $\alpha_s^n \log^m (m_c^2/Q^2)$ terms from higher orders
 - found to work for HERA $F_2^{c\bar{c}}$ up to rather high Q^2
- ZM-VFNS (zero-mass variable flavor number):

change from $n_f=3$ to $n_f=4$ quark PDFs at $\mu=m_c$ quarks treated as massless in hard scattering

- \blacktriangleright resums $\alpha_s^n \log^m(m_c^2/Q^2)$ terms via DGLAP evolution
- \blacktriangleright adequate for $Q^2 \gg m_c^2$ but not for $Q^2 \sim {\rm few}~m_c^2$
- c quark PDFs needed for high-p_T charm production at HERA, Tevatron and LHC

Main constraints on low-x gluon density

 inclusive charm production: F₂^{cc̄} significant changes in theory used by global parton analyses

Different schemes:

- ► FFNS (fixed flavor number):
- ZM-VFNS (zero-mass variable flavor number):
- GM-VFNS (general mass variable flavor number) : interpolate between FFNS at low and ZM-VFNS at high Q^2 $F_2^{c\bar{c}}$ at HERA and b prod'n at LHC

technical choices in matching n_f and $n_f + 1$ descriptions

- $\blacktriangleright\ m_c$ in kinematical variables, in hard-scattering coefficients
- at NNLO discontinuities in both PDFs and coefficient fcts. but not in observables
 R. Thorne, '06
- analogous discussion for bottom
 - b quark PDFs needed for LHC

 experimental errors may decrease by factor 2 with full HERA 2 data

 \rightarrow O. Behnke HERA/LHC Workshop '07

 constraints on theory/PDF fits

P. Thompson, hep-ph/0703103

Some recent PDF fits

▶ MSTW 2006

0706.0459 [hep-ph]

- global fit, NNLO for DIS and Drell-Yan
- refined treatment of c, b in GM-VFNS at NNLO
 → significant changes w.r.t. MRST 2004 NNLO
- CTEQ6.5 hep-ph/0702268, hep-ph/0701220, hep-ph/0611254 global fit, NLO, GM-VFNS
 - previous CTEQ6.1 had ZM-VFNS → significant changes
- ► Alekhin 06 S. Alekhin, K. Melnikov, F. Petriello, hep-ph/0606237 DIS and DY data at NNLO with $n_f = 3$ FFNS charm and bottom contrib. to F_2 at $O(\alpha_s^2)$
- ▶ BBG J. Blümlein, H. Böttcher, A. Guffanti, hep-ph/0607200 non-singlet PDFs (no gluon) from $F_2^p - F_2^n$ at NNLO and N³LO
- Fits also permit precise determination of α_s competitive with e^+e^-

effect of CTEQ6.1 \rightarrow CTEQ6.5 on LHC cross sections

W.-K. Tung, HERA/LHC workshop, 3/07

separation of quark flavors and of q vs \bar{q}

- crucial non-HERA input:
 - $ar{d}$ vs $ar{u}$: Drell-Yan, CDF W^\pm asymmetry (see ABS S2-004)
 - s and $\bar{s}{:}~\nu$ and $\bar{\nu}$ DIS: CDHSW, CCFR, CHORUS, NuTeV
- HERA large Q^2 data ... statistics crucial

- ▶ *ep* struct. fcts.: precise theory
 - \blacktriangleright NC beam charge asy. $\rightarrow F_3^{\gamma Z}$ $q-\bar{q}~$ at small x
 - NC beam pol. asy. $\rightarrow F_2^{\gamma Z}$ u+d at large x
 - ► CC: $e^+p \rightarrow u + c$ and $\bar{d} + \bar{s}$ $e^-p \rightarrow d + s$ and $\bar{u} + \bar{c}$ \bar{s} , s from charm tagging?

C. Gwenlan et al., hep-ph/0509220

Gluon LO . NLO and NNLO

R. Thorne, HERA/LHC workshop, 3/07

Back to small x

- radiative corrections are important at low x
- ▶ see changes of g(x) extracted at LO, NLO, NNLO

NB: g(x) is not an observable but wait a few slides ...

Summary

Small-x resummation

- G. Altarelli, R. Ball, S. Forte (ABF); C. White and R. Thorne;
- M. Ciafaloni, D. Colferai, G. Salam, A. Stasto (CCSS)
 - ► at small x large logarithms \(\alpha_s^n \log^m x\) in fixed-order evolution kernels and hard-scattering coefficients
 - resum in BFKL approach at NLL, i.e. α_s(α_s log x)ⁿ project out leading twist part join on to fixed-order results at higher x
 - technical issues:
 - running of α_s
 - choice of scheme
 - recent progress: inclusion of quarks

Diffraction 000000000 Summary

first application in global PDF fit:

C. White and R. Thorne, hep-ph/0611204

resummed evolution kernel at NNL, coefficient fct. improved LL

C. White, R. Thorne, 0706.2609 [hep-ph]

The longitudinal structure function

- ► F_L is a basic observable together with F₂ describes inclusive cross section
- ► starts at order α_s → directly sensitive to g(x)
- discriminates between theoretical approaches

C. White, R. Thorne, 0706.2609 [hep-ph]

Structure functi	ions and	parton	densities	
0000000000	00000	0000		

Non-linear dynamics

- ► 1/Q ~ transverse size of parton as "seen" by hard probe
- linear evolution: gluons split \rightarrow high density at low x
- very high density: gluons recombine
 density saturates
- non-linear effects become strong at saturation scale Q_s(x)

 non-linear evolution equations various degrees of approximation Balitsky-Kovchegov, JIMWLK, pomeron loops, ...

intense theoretical activity

- description of DIS processes in color dipole picture
 - \rightarrow dipole scattering amplitude $N_{q\bar{q}-p}$

- description of DIS processes in color dipole picture
 - \rightarrow dipole scattering amplitude $N_{q\bar{q}-p}$
- in non-saturated regime connect with leading-twist description

 $N_{q\bar{q}-p} \leftrightarrow g(x)$

Summary

 parameterizations of N_{qq̄-p} incorporating saturation attempts to derive/motivate from non-linear evolution eqs. Golec-Biernat, Wüsthoff; Itakura, Iancu, Munier; Marquet, Peschanski, Soyez; Kowalski, Motyka, Watt; Forshaw, Sandapen, Shaw; ...

Diffraction

- \blacktriangleright successful fits to HERA F_2 down to low Q^2 and of $F_2^{c\bar{c}}$
- geometric scaling: $F_2(x,Q^2) \approx$ only function of $Q^2/Q_s^2(x)$
- ▶ with same $N_{q\bar{q}-p}$ describe HERA diffraction \rightarrow next section no proof of saturation at HERA, but strong indications

Where does saturation become important?

recent estimates of $Q^2_s(x)$ in ${
m GeV}^2$

$x = 10^{-4}$	$x = 10^{-6}$	Ref.
0.7	1.9	G. Soyez, 0705.3672 [hep-ph]
0.8	4.0	H. Kowalski, L. Motyka, G. Watt, hep-ph/0606272
0.8	2.0	K. Golec-Biernat, S. Sapeta, hep-ph/0607276

- at HERA typical $Q_s^2(x) \lesssim 1 \, {
 m GeV}^2$
- HERA data have driven efforts to validate and quantify saturation
- ► impact on heavy-ion collisions → RHIC, ALICE theory of color glass condensate
- prospects to study saturation in pp at LHC \rightarrow forward detectors

•

Diffraction 0000000000 Summary

Forward DY and saturation

Rise of F_2 tamed by saturation?

- CTEQ 5M1: standard, "non-saturated" pdf
- EHKQS: "saturated" pdf with nonlinear terms in gluon evolution
 [A. Dainese et al., HERA-LHC Workshop proc.]
 - → Saturation effects cause a 30% decrease in the DY cross section!

[PVM, CMS-note 2007/002]

Event yield: ~2 million events/fb⁻¹ in CASTOR

Pierre Van Mechelen - "Forward" Physics at the LHC - HERA-LHC Workshop - DESY - March 15, 2007

Summary O

F_L once more

• expect bigger saturation effects than in F_2

J. Bartels, K. Golec-Biernat, K. Peters, hep-ph/0003042 study in saturation model: ratio of full result and twist-two part: at $Q^2 = 5 \text{ GeV}^2$ and $x = 2.5 \times 10^{-4}$

$$\frac{F_2^{\rm full}}{F_2^{t=2}}\approx 0.94 \qquad \qquad \frac{F_L^{\rm full}}{F_L^{t=2}}\approx 0.66$$

caveat: uses old model parameters, no update of study but: trend follows from general considerations

Structure	functions	and	parton	densities	
000000	000000	000	0000		

Diffraction	
000000000	

- In DIS have large fraction of events with leading proton/large rapidity gap: γ^{*}p → X + p
- \blacktriangleright overall fraction in DIS $\sim 10\%$

Diffraction 000000000

► $\sigma_{\rm diff}/\sigma_{\rm tot}$ flat in Q^2 → leading twist phenomenon

- ► twist-two descript. of inclusive F₂ ok for large Q² factorization theorems
- but twist-two hard scattering
 - \oplus parton showers
 - \oplus hadronization models
 - can miss important aspects of final state

Summary 0

 σ_{diff} and σ_{tot} have very similar energy dep'ce in full Q² range

 $\leftarrow \text{ H1, hep-ex0606004}$

Vector mesons and virtual Compton scattering

- for large Q² or with heavy quarks σ rises much faster than σ_{tot}
- also well described in saturation models

Vector mesons and virtual Compton scattering

- for large Q² or with heavy quarks σ rises much faster than σ_{tot}
- also well described in saturation models

- in non-saturated regime have again leading twist factorization theorems

 → generalized gluon distribution
- ► t dependence ~→ spatial distribution of gluons in plane ⊥ to hadron momentum

H. Kowalski, L. Motyka, G. Watt, hep-ph/0606272 \rightarrow

Rapidity gaps in hard pp or $p\bar{p}$ collisions

 \blacktriangleright at Tevatron \sim order of magnitude more rare than in DIS

Diffractive f	ractions fo	r forward	and	central	gap	processes	at	CDF
---------------	-------------	-----------	-----	---------	-----	-----------	----	-----

Hard process	\sqrt{s} (GeV)	$R = \frac{\text{DIFF}}{\text{TOTAL}} (\%)$	Kinematic region
$W(\to e\nu) + G$	1800	1.15 ± 0.55	$E_T^e, E_T > 20 \mathrm{GeV}$
Jet+Jet+G	1800	0.75 ± 0.1	$E_T^{jet} > 20~{ m GeV},~\eta^{jet} > 1.8$
$b(\rightarrow e + X) + G$	1800	0.62 ± 0.25	$ \eta^e < 1.1$, $p_T^e > 9.5~{ m GeV}$
$J/\psi(\rightarrow \mu\mu) + G$	1800	1.45 ± 0.25	$ \eta^{\mu} < 0.6$, $p_T^{\mu} > 2~{ m GeV}$
Jet-G-Jet	1800	1.13 ± 0.16	$E_T^{jet} > 20 {\rm GeV}, \eta^{jet} > 1.8$
Jet-G-Jet	630	2.7 ± 0.9	$E_T^{jet}>8~{ m GeV},~\eta^{jet}>1.8$

G = gap in rapidity

Table from: K. Goulianos, hep-ph/0407035

Summary

▶ gaps in hard $p\bar{p}$ proc's: strong suppression w.r.t. calculation using diffractive PDFs from HERA → A. Rostovtsev

P. Newman and F.-P. Schilling HERA/LHC workshop, March '07

- ▶ gaps in hard $p\bar{p}$ proc's: strong suppression w.r.t. calculation using diffractive PDFs from HERA → A. Rostovtsev
- ▶ diffractive factorization in $p\bar{p}$ broken by spectator interactions

P. Newman and F.-P. Schilling HERA/LHC workshop, March '07

- ▶ gaps in hard $p\bar{p}$ proc's: strong suppression w.r.t.
 - calculation using diffractive PDFs from HERA \rightarrow A. Rostovtsev
- \blacktriangleright diffractive factorization in $p\bar{p}$ broken by spectator interactions

P. Newman and F.-P. Schilling HERA/LHC workshop, March '07

- same interactions can populate final state
- physics of underlying event and multiple interactions

- ▶ gaps in hard $p\bar{p}$ proc's: strong suppression w.r.t. calculation using diffractive PDFs from HERA → A. Rostovtsev
- \blacktriangleright diffractive factorization in $p\bar{p}$ broken by spectator interactions

P. Newman and F.-P. Schilling HERA/LHC workshop, March '07

- ► spect. interactions at least partly soft → models
- HERA + Tevatron
 - \rightarrow validate models
 - \rightarrow extrapolate to LHC

Exclusive production at LHC

- produce Higgs (or other particles) in clean environment
- need forward detectors
 Totem, FP220, FP420
- expt'l challenge: triggers, low rates

Why interesting?

- \blacktriangleright tagged protons \rightarrow precise mass/width meas't $~\sim$ 2 to 3 GeV
- ▶ selects CP = ++ states (CP = +− strongly suppressed)
- good signal/background ratio

How to calculate?

- \blacktriangleright HERA vector meson prod'n $~\rightarrow~$ generalized gluon distribution
- hard QCD corrections Sudakov suppression factor

Exclusive production at LHC

- produce Higgs (or other particles) in clean environment
- need forward detectors
 Totem, FP220, FP420
- expt'l challenge: triggers, low rates

Why interesting?

- \blacktriangleright tagged protons \rightarrow precise mass/width meas't $~\sim$ 2 to 3 GeV
- ▶ selects CP = ++ states (CP = +− strongly suppressed)
- good signal/background ratio

How to calculate?

- \blacktriangleright HERA vector meson prod'n $~\rightarrow~$ generalized gluon distribution
- ► rescattering corrections: models checked against Tevatron ongoing CDF studies: $p\bar{p} \rightarrow p + \text{dijet} + \bar{p}$, $p\bar{p} \rightarrow p + \gamma\gamma + \bar{p}$

Diffraction 000000000 Summary

▶ light SM Higgs $\rightarrow W^+W^-$ (one W off shell) • very low background B. Cox et a

B. Cox et al., hep-ph/0505240

8

Excl.	DPE	H->	WW:	Event	yield	for L=30) fb-1
	Exhul	Me 1	. <u>3 an</u>	d new	RP ac	ceptance	s

			fully-lept		semi-		
Mh[GeV]	σXBR[fb]	Acc.[%]	cms	atlas	cms	atlas	Total
120	0.37	57	0.2	0	1.2	1	1.3
135	0.77	62	0.6		3.1		3.4
140	0.87	63	0.6	1	3.5	3	3.8
150	1.00	66	1.0		4.9		5.3
160	1.08	69	1.0	1	6.0	5	6.6
170	0.94	71	1.0		5.4		5.9
180	0.76	74	0.8	1	4.5	4	4.9
200	0.44	78	0.6	1	2.9	2	3.2

M. Taševski, HERA/LHC workshop, 3/06

Diffraction 00000000● Summary O

▶ light Higgs $\rightarrow b\bar{b}$

• very low rate in SM with triggers and cuts must remove $gg \rightarrow b\bar{b}$ background (although is much lower than in inclusive case) detailed background calculations V. Khoze, M. Ryskin, J. Stirling, '06

Diffraction 000000000 Summary

▶ light Higgs $\rightarrow b\bar{b}$

• strongly enhanced rate in MSSM scenarios with high aneta

Stat.sig=5 for $H \rightarrow bb$, mhmax sc.,µ=-500 GeV

Implications of HERA measurements for LHC

Summary

HERA has pioneered study of DIS at small x and at large Q^2

- precision PDFs
- theory of low x dynamics
 high fixed orders, resummation, non-linear dynamics
- diffraction: subtle QCD dynamics in final state
- ► HERA ⊕ Tevatron ~→ exclusive production at LHC in some >SM scenarios could become discovery channel

important results still to come from HERA II data

- statistics and kinematic reach
- longitudinal structure function F_L