Inclusive and jet cross sections in diffraction at HERA

W. Schmidke MPI München On behalf of the H1 and ZEUS collaborations ISMD 2007 Berkeley, CA

Outline:

- Diffractive processes:
 - colorless exchange
 - experimental measurement
- Structure of colorless exchange:
 - Diffractive Parton Density Functions (DPDFs)
 - measurement in inclusive DIS: quarks
 - measurement in dijets in DIS: gluons
- DPDFs \rightarrow photoproduction at HERA \sim hadron-hadron
 - test of factorization

Diffractive DIS at HERA

HERA: 10% of low-x Deep Inelastic Scattering (DIS) events are diffractive

- Q^2 = virtuality of photon =
 - = (4-momentum exchanged at e vertex)²
- = (4-momentum exchanged at p vertex)² t typically: |t|<1 GeV²
- W = invariant mass of γ -p system
- M_x = invariant mass of γ -IP system
- \mathbf{x}_{IP} = fraction of proton's momentum taken by IP
- $\beta(z_{IP}) = B$ jorken's variable for the IP
 - = fraction of IP momentum carried by struck quark

 $= X/X_{ID}$

- Probe structure of <u>color singlet exchange</u> (IP) $\rightarrow F_2^{D}$
- A non-perturbative feature of proton structure

Diffractive DIS

Diffractive event selection

QCD factorization in hard diffraction

 $f_{i/p}(z,Q^2,x_{IP},t)$ expresses the probability to find, with a probe of resolution Q², in a proton, parton i with momentum fraction z, under the condition that the proton remains intact, and emerges with small energy loss, x_{IP} , and momentum transfer, t – the DPDFs are a feature of the proton and evolve according do DGLAP

- Assumption \rightarrow proton vertex factorization:

$$\sigma (\gamma^* p \to Xp) \approx f_{IP/p}(x_{IP},t) \times f_{i/p}(z,Q^2) \times \sigma_{\gamma^* p}(z,Q^2)$$

$$\longrightarrow \text{Regge motivated IP flux}$$

At large x_{IP} , a separately factorizable sub-leading exchange (IR), with different x_{IP} dependence and partonic composition

H1 inclusive diffractive measurements

Regge flux params.

ZEUS LRG vs LPS results

6

Comparison ZEUS LRG ↔ H1 LRG

 \rightarrow Fair agreement H1&ZEUS

Fraction of proton dissociation events different for ZEUS and H1 detectors
 ZEUS LRG data normalized to H1 LRG data

DPDFs extraction

(extrapol. fit)

......

H1 Data

> Fit LRG data with fixed x_{IP} binning

> Use proton vertex factorization with $\alpha_{IP}(t)$ from FPS and LRG data to relate data from different x_{IP} values with complementary β , Q² coverage

> Exclude data with $M_x < 2$ GeV or $\beta > 0.8$ and with $Q^2 < 8.5$ GeV² (poor measurement, theory)

DPDFs

H1 DPDFs Fit A & B z Σ(z,Q²) z g(z,Q²) Q² [GeV²] Singlet Gluon 0.2 0.5 different starting parameterizations 8.5 0.25 0.1 Well constrained singlet 0 Weakly constrained gluons 0.2 0.5 20 (esp. at high values of β) 0.1 0.25 0 0.2 0.5 90 1.2 $\int dz z g(z, Q^2) / \int dz z [\Sigma+g](z, Q^2)$ 0.1 0.25 **Gluon Momentum Fraction** for 0.0043 < z < 0.8 ~75% 0 0.2 0.5 gluons 0.8 800 in diff. 0.1 0.25 0.6 exchange 0 0.4 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 H1 2006 DPDF Fit A $\mathbf{Z} = \boldsymbol{\beta}$ $\mathbf{Z} = \boldsymbol{\beta}$ (exp. error) 0.2 (exp.+theor. error) H1 2006 DPDF Fit B H1 2006 DPDF Fit A H1 2006 DPDF Fit B (exp.+theor. error) (exp. error) п 10² (exp.+theor. error) 10 $Q^2 [GeV^2]$

9

These fit DPDFs: compare to **diffractive** dijets in DIS

- At low β (< 0.3) Fit A and Fit B are similar, agree with predictions from fit DPDFs
 - Consistent with factorization
 - At high β the diffractive dijet data clearly prefer FitB
 - Sensitive to $g(\beta, Q^2)$ via boson-gluon fusion (BGF)
- Include DIS diffractive dijets in DPDF fit \searrow 10

• Include dijets \Rightarrow much improved g(b,Q²) at high β

11

Transition $ep \rightarrow hadron-hadron$

Factorisation not expected to hold in pp, pp scattering

[Kaidalov, Khoze, Martin, Ryskin, Goulianos, Levin., Gotsman, Maor, ..]

Indeed it does not: factor 10 normalization discrepancy when HERA DPDFs are extrapolated to Tevatron

- The picture for this: rescattering
- Additional interactions between pp in initial, final state; can simultaneously:
 - drop final state p to lower energy, not detected in forward spectrometer
 - products from interaction can destroy the rapidity gap
- \Rightarrow loss of diff. events all selection methods
- Investigate at HERA: transition high Q² DIS \rightarrow Q²~0 photoproduction

Diff.-dijets: DIS \rightarrow photoproduction

With dijets have additional observable: - X_γ = fraction of photon momentum in hard scattering
 'Direct' photon w/ X_γ=1 behaves pointlike
 'Resolved' photon w/ X_γ

can behave like a hadron:

DIS and direct PhP

Diffractive-dijets in PhP: ZEUS&H1 measurements & theory comparison

- <u>ZEUS measurement</u>
 - k_{τ} algorithm in LAB frame, R=1
 - E_{T}^{jet1} (E_{T}^{jet2}) > 7.5 (6.5) GeV
 - $\langle Q^2 \rangle$ = 0.02 GeV²
 - -142 < W < 293 GeV
 - X_{IP} < 0.025
- ZEUS comparison:
 -NLO calculation Klasen&Kramer
 input recent fit DPDFs

<u>H1 measurement</u>

- k_{τ} algorithm in LAB frame, R=1
- $E_{T}^{jet1} (E_{T}^{jet2}) > 5 (4) GeV$
- Q² < 0.01 GeV²
- -165 < W < 242 GeV
- X_{IP} < 0.03
- H1 theory comparison:
 - -NLO calculation Frixione&Ridolfi
 - input recent fit DPDFs

Diffractive-dijets in PhP: ZEUS

- Reasonable agreement with Klasen&Kramer NLO
- No strong evidence of cross section suppression w.r.t. K&K
- No preferential suppression of resolved contribution

Diffractive-dijets in PhP: H1

H1 Diffractive Dijet Photoproduction

- Data ~½ of Frixione&Ridolfi NLO calculation
- Evidence of cross section suppression w.r.t. F&R
- No preferential suppression of resolved contribution

ZEUS↔H1 inconsistent?Not clearly...

- H1 starts at lower E_{T}^{jet}
 - H1: $E_T^{jet1(jet2)} > 5$ (4) GeV
 - ZEUS : *E_T* jet1(jet2) > 7.5 (6.5) GeV
- x_P range slight difference:
 - H1: < 0.03, ZEUS < 0.025</p>
- E_T^{jet1} in the data seems harder than the NLO
 - Both in H1 and ZEUS
 - Seems the reason to have more suppression at low
 E^{jet}₇ i.e. the H1 result
- Problem in the NLO? Or, suppression only at low- E_{T}^{jet} events?

Nep/de/ log ZEUS data 77pb⁻¹ scale ZEUS LPS H1 2006 A, AFG (x 0.87) H1 2006 A, GRV (x 0.87) H1 2006 B, GRV (x 0.87) 10 8 10 12 <mark>_je</mark>t1 (GeV)

- Data is ~final
- Implementation of DPDFs to NLO calculations still work in progress...

Summary

- Diffraction (color singlet exchange) measured in DIS and photoproduction at HERA
- Structure of exchange: DPDFs
 - Inclusive DIS \rightarrow quark structure
 - DPDFs \leftrightarrow dijets in DIS: factorization holds
 - Dijets in DIS \rightarrow improved gluon structure \Rightarrow Gluon dominated: ~75%
- Transport DPDFs \rightarrow hadron-hadron
 - Seen to fail badly (×10) at Tevatron
 - Photoproduction at HERA: may apply in some kinematic regions, not others (?)
 - \Rightarrow work in progress...