# High $p_{\tau}$ jets in DIS and $\gamma p$ at HERA

#### ISMD 2007, Berkeley, USA 4-9 August 2007

Nicola Coppola







On behalf of the H1 and ZEUS collaborations

- Introduction/Motivations
- Results: inclusive and di- Jets in  $\gamma p$  and DIS regime, integrated jet shape and combined  $\alpha_s$  determination
- Conclusions

### HERA Collider

HERA



ep kinematics: photon virtuality Q<sup>2</sup> energy c.m.  $\sqrt{s}=300-320 \text{ GeV}$ inelasticity  $y=Q^2/(x_{Bj}s)$ energy  $\gamma p$  c.m.  $W_{\gamma p}^{-2}\approx\gamma s-Q^2$ two regimes:  $Q^2 \approx 0 \text{ GeV}^2$  - photoproduction ( $\gamma p$ )  $Q^2 > 1 \text{ GeV}^2$  -- electroproduction (DIS) only 2 independent variables out of y,  $x_{Bi}$ ,  $Q^2$ 



### ZEUS and H1 detectors



<u>ZEUS</u>

<u>H1</u>

- Tracking  $\Rightarrow$  momentum measurement, particle ID
- Calorimetry  $\Rightarrow$  energy measurement

### Luminosity from HERA

On June 30<sup>th</sup> data taking ended but Large increase of integrated luminosity collected, available for future analyses!!!



# (some of the data presented here are based on HERA I data only)

### Introduction

#### Why high $p_{\tau}$ jets production?

In pQCD calculation of jet cross sections:

$$d\sigma_{ep} = \sum_{ab} \int dy f_{\gamma/e}(y) \int \int dx_p dx_\gamma f_p(x_p, \mu_F^2) f_\gamma(x_\gamma, \mu_F^2) d\hat{\sigma}_{ab}(x_p, x_\gamma, \mu_R^2)$$

f<sub>a</sub>: parton a density in the proton, determined from experiment; long-distance structure of the target
 dô<sub>ab</sub> : subprocess cross section, calculable in pQCD;

short-distance structure of the interaction

•At sufficiently high  $p_{T}^{jet}$ , fragmentation effects negligible,

jet production and substructure are expected to be calculable by pQCD

### Jet production in NC DIS

Jet production in neutral current deep inelastic scattering up to  $\mathcal{O}(\alpha_s)$ :



#### sensitive to proton PDF

### Jet production in $\gamma p$



### $\Rightarrow$ sensitivity to proton's and photon's structures

### DIS and $\gamma p$ : Experimental def.



### Jet reconstruction

#### Longitudinal invariant $\boldsymbol{k}_{_{T}}$ algorithm



#### Probing photon structure in $\gamma p$ ZEUS NLO Frixione Ridolfi 2-jet γp: $E_{\tau}^{jet1}$ > 25 GeV & $E_{\tau}^{jet2}$ > 15 GeV 1400 ZEUS 82 pb NLO ⊗ HAD: -0.5<η<sub>iet</sub><2.75 (H1) 1200 AFG04 $E_{\tau}^{jet1}$ >20 GeV & $E_{\tau}^{jet2}$ >15 GeV AFG 1000 GRV SAL $-1 < \eta_{iet} < 3.0$ (at least 1 jet $-1 < \eta_{iet} < 2.5$ ) (ZEUS) Jet ES uncertainty 800 Sensitive region to gluons in the photon: 600 low x, high x 400 dd/dx<sub>p</sub> [pb] $x_{\gamma} < 0.8$ dg/dx<sub>p</sub> [pb $x_{\gamma} > 0.8$ 200 102 10 AFG04 1.6 10 10 - - NLO $NLO \times (1 + \delta_{had})$ atio to 0.5 0.6 0.5 0.1 0.3 0.4 0.6 0.2 0.3 0.4 0.1 0.8 XD XD 0.2 0.6 0.8 0.4 $\mathbf{X}_{v}^{obs}$ $(x_{b} < 0.1 \text{ gluon induced interaction}, x_{b} > 0.1 \text{ gluon induced interaction})$

### Jets help constraining gluon content of the proton



### Probing gluon content of proton in $\gamma p$



### Jets help constraining gluon content of the proton

Jet data (Incl. Jets in DIS and 2-jet in  $\gamma p$  96/97) already used in PDF fits by ZEUS collaboration to further constrain results of PDF fits obtained via inclusive DIS analysis performed with scaling violations of structure function F<sub>2</sub>

>10x more luminosity available than what was used

Nicola Coppola



### Probing gluon content of proton in DIS



#### HERA I + part of HERA II data: 209 pb<sup>-1</sup> (prev 82 pb<sup>-1</sup>)

Nicola Coppola

ISMD2007, High  $p_{\tau}$  jets in DIS and  $\gamma p$  at HERA (

### High precision QCD measurement tool



Nicola Coppola

ISMD2007, High  $p_{\tau}$  jets in DIS and  $\gamma p$  at HERA

05.08. 2007 15

## High $Q^2$ jet multiplicity

### Inclusive jet normalized to DIS NC (H1)

HERA I - 65.4 pb<sup>-1</sup> HERA II - 320 pb<sup>-1</sup> reduced jet phase space -0.8<\{\eta^{jet}}\_{lab}<2 NLO pQCD (FastNLO) μ<sub>F</sub>=Q; μ<sub>P</sub>=E<sub>T</sub>

experimental uncertainty (~6%) •jet energy scale ~4% •data correction model dependence ~2-3%

theory uncertainty (~5-10%) erenormalization scale dependence •PDF dependence

Partial cancellation of exp. syst. uncert. ~7%  $\rightarrow$  6% on multiplicity  $\Rightarrow$  ~40% reduction of exp. uncert. on  $\alpha_{a}$ 



### DIS results with whole H1-L



### Jet substructure in NC DIS

Measurement of jet substructure allows investigations on  $\rightarrow$  differences between quark- and gluon-initiated jets  $\rightarrow$  the dynamics of the different partonic final states,  $\rightarrow$  as well as determinations of  $\alpha_s$ 

• Integrated jet shape:

$$\langle \Psi(r) 
angle = rac{1}{N_{jets}} \sum_{jets} rac{E_T(r)}{E_T^{jet}}$$

r

Average fraction of the jet's transverse energy that lies inside a circle in the  $\eta$ - $\phi$  plane of radius r concentric with the jet axis

 QCD predicts that gluon jets are broader than quark jets

$$\Rightarrow \Psi_{\text{QUARKS}}(\mathbf{r}) > \Psi_{\text{GLUONS}}(\mathbf{r})$$

### Jet substructure, results



### $\boldsymbol{\alpha}_{\!\scriptscriptstyle \boldsymbol{s}}$ extraction

For the first time using both H1 and ZEUS data to extract  $\alpha_{e}$  directly; optimizing against theory uncertainties and experimental correlations: HERA average obtained using already published results parametrisation  $\alpha_{c}(M_{z})=0.1186\pm0.0011(exp.)\pm0.0050(th.)$  $rac{d\sigma}{dA}$ NLO QCD measured value Method: use the  $\alpha_{s}$ -dependence of the pQCD calculations, taking into account correlations of PDFs: Perform NLO calculations with many PDF •use for each as input proper value  $\alpha_{c}(M_{z})$  $\bullet$ parametrize  $\alpha_{c}$ -dependence of observable  $\alpha_s(M_Z)$ extracted •determine  $\alpha_{e}(M_{z})$  from measured value of observable value ISMD2007, High  $p_{\tau}$  jets in DIS and  $\gamma p$  at HERA Nicola Coppola 05.08, 2007 20

## data used for $\alpha_{\!_{s}}$ extraction



Normalised Inclusive Jet Cross Section



 $\alpha_{s}(M_{z})=0.1179\pm0.0024(exp.)_{-0.0032}^{+0.0052}$  (th.)  $\pm0.0028(PDF)$ 

Nicola Coppola

ISMD2007, High  $p_{\tau}$  jets in DIS and  $\gamma p$  at HERA

05.08.2007

### Phase space & extraction method

#### Simultaneous fit to 30 measurement:

 $\rightarrow$  24 H1 data points from double-differential cross section (150<Q<sup>2</sup><15000 GeV<sup>2</sup>)

 $\rightarrow$  6 ZEUS data points from single-differential Q2 cross section (125<Q<sup>2</sup><10<sup>5</sup> GeV<sup>2</sup>)

#### NLO QCD calculations:

- $\rightarrow$  differential cross section calculated at NLO ( $O(\alpha_s^2)$ )
  - pPDFs MRST2001 sets
  - renormalisation scale  $\mu_{R} = E_{TR}^{jet}$  of each jet
  - factorization scale  $\mu_{F}$ =Q

•Experimental uncertainties on combined  $\alpha_s(M_z)$ 

 $\rightarrow$  0.0019 (Hessian method; fit sources of sys. unc., eg: energy scale, luminosity, mod. dep.

Theoretical uncertainties on combined  $\alpha_s(M_z)$ 

- $\rightarrow$  terms beyond NLO: 0.0021 (Jones et al. Method, JHEP 122003007)
- $\rightarrow$  factorisation scale: 0.0010 (by varying  $~\mu_{_{\rm F}}$  by factors 2 and 0.5)
- $\rightarrow$  pPDFs: 0.0010 (by using 30 sets of MRST2001)
- $\rightarrow$  hadronisation: 0.0004 (using different parton-shower models)

22

#### HERA combined 2007 $\alpha_{c}(M_{7})$ value •HERA combined 2007 $\alpha_{c}(M_{7})$ value **HERA** ď inclusive-jet NC DIS • ZEUS (from $d\sigma/dE_T^{jet}$ ) $\alpha_{c}(M_{7})=0.1198\pm0.0019(exp.)\pm0.0026(th.)$ 0.2 • H1 (from $d^2\sigma/dQ^2dE_T^{jet}$ ) ERA $\alpha_{\rm s}$ working group 0.15 . . . . . . . . th. uncert. QCD **Inclusive jet cross sections in NC DIS** $\alpha_{\rm s}(M_{\rm T}) = 0.1198 \pm 0.0032$ (HERA combined 2007) 0.1 ZEUS (Phys Lett B 649 (2007) 12) 10 exp. uncert. E<sup>jet</sup><sub>T</sub> (GeV) Inclusive-jet cross sections in NC DIS H1 (DESY 07-073) HERA combined 2007 (2.7%) HERA combined 2007 inclusive-jet NC DIS (this analysis) HERA average 2004 (4.3%) **HERA** average 2004 (hep-ex/0506035) World average (0.8%) World average 2006 (S. Bethke, hep-ex/0606035) Measurements consistent with each other and the 0.12 0.14 0.1 world average $\alpha_{s}(M_{z})$

Nicola Coppola

ISMD2007, High  $p_{\tau}$  jets in DIS and  $\gamma p$  at HERA 05.08. 2007

23

### Conclusions

Precise measurements in wide kinematic ranges have been presented Inclusive and di-jet cross sections were measured in DIS and photoproduction giving handle to photon and proton structure functions •2-jets cross sections in DIS with higher  $\mathcal{L}$  should lead to additional constraints on gluon in proton PDF and other QCD param. •jet radius dependence of inclusive jet cross section & integrated jet shapes (full HERA II stats) in DIS well described by pQCD prediction •H1 jet multiplicities in DIS with full HERA II data sample released Inclusive jet in DIS HERA I data were used by ZEUS and H1 collaborations for a high precision  $\alpha_{a}$  common fit for the first time

•for the future:

plenty more of results from the large luminosity recorded



### Jet production in NC DIS

Jet production in neutral current deep inelastic scattering up to  $\mathcal{O}(\alpha_s)$ :





ISMD2007, High  $p_{\tau}$  jets in DIS and  $\gamma p$  at HERA Nicola Coppola

05.08, 2007 26

Ζ



### High Q<sup>2</sup> jet multiplicity

Inclusive jet normalized to DIS NC (H1)



Significant errors improvement at high  $Q^2$  and  $E_{\tau}$  in HERA II

### HERA Collider







### **Kinematics**

