

Fragmentation and particle production in DIS and photoproduction

On behalf of the H1 and ZEUS Collaborations

Teresa Tymieniecka, University of Warsaw, Poland E-mail: teresa@fuw.edu.pl

- Energy of~300 GeV in ep CMS
- neutral current (NC)

Reference frames

Hadronic Centre of Mass or CMS γp

Photon virtuality, Q, is related to momentum of scattered quark.

Knowledge of particle rapidity is important for understanding of underlying processes and for comparison with e^+e^- or pp.

Outline:

- fragmentation in DIS (scaled momenta)
- particle production (size of their sources)
- fireball-like events in photoproduction

Two similar analyses on fragmentation:

- H1 Collaboration, DESY 07-065, Phys.Lett. (luminosity 44 pb⁻¹)
- ZEUS Collaboration,(Preliminary) (luminosity 0.5 fb⁻¹)

Monte Carlo Models

Our best knowledge is stored in MC models including hadronisation:

Assumption for fragmentation process

Particle definition:

- Charged particle only; no cuts,
- Medium lifetime, i.e. all particles with a lifetime larger than 0.01 ns
- Stable particles include: Λ , Σ^{\pm} , Ω , K^0

Fragmentation functions D(z,Q²)

Hadron spectra in ep hard scattering

- Evolution of FF given by DGLAP
- FF are universal (from factorisation theorem)
- Scaling violation in the Q² evolution permits to determine α_s

Scaled momentum $x_p = \frac{(2 P_h)}{Q} = \frac{P_h}{E_{beam}}$

For **ep** and **e⁺e⁻**

P_h – momentum of charged
 particles in current region
 of the Breit frame.

With Q increasing dn/dx_p is softer, i.e. more particles with smaller fraction of energy Q/2.

 $\ln(1/x_p)$

Comparison with MC models in Q² intervals

Both LEPTO and ARIADNE, MC models reproduce main features failing in normalisation at the highest Q²

Modify Leading Log Approximation (MLLA)

The limiting spectra described by MLLA (+LHPD) are given Λ_{QCD} =270 MeV K_h=1.31 (from e⁺e⁻).

At low Q² migration from target region

Scaling violation in x_p intervals H1 data e⁺e⁻ data

Good agreement between ep and e^+e^- , except:

- higher Q^2 and small x_p
- BGF contribution low Q² and mid x_p kinematics depopulates current region

T.Tymieniecka

ZEUS

Fragmentation functions (FF):

NLO QCD predictions implemented in CYCLOPS (PDF: CTEQ6M, $\Lambda_{MSbar}^{(5)=266}$ supported by S.Albino) Full NLO matrix element + partonic FF proposed by:

• Kretzer (2000) at Z⁰pole data ALEPH, SLD, low-en. TPC

 KKP (Kniehl,Kramer,Poetter) (2000) at Z⁰pole data
 ... + DELPHI, 3jet OPAL

AKK (Albino,Kniehl,Kramer) (2005) update of KKP (d,s)

Comparison **ep** with **e**⁺**e**⁻

 supports the concept of quark fragmentation universality.

Summary:

- MC models and analytical MLLA+LPHD QCD calculations do not reproduce the ep data in entire range of Q² and x_p,
- NLO + FF based on e⁺e⁻ fail to describe x_p distribution as a function of Q² (small differences between different FFs).

Particle production

Need for:

- for modelling production of hadrons at high energy,
- for testing the mechanism for baryon production and baryon transport along the rapidity axis,

Measurements done:

- differential cross sections,
- baryon-to-meson ratio,
- ratio of strange-to-light hadrons,
- transverse spin polarisation of Λ ,
- size of the emitting source.

Investigated particles:

 $K^{\pm}K^{\pm}, K^0_s, \Lambda(\bar{\Lambda}), p(\bar{p}), \boldsymbol{d}(\boldsymbol{\bar{d}})$

Selection criteria:

- 120 pb⁻¹ (HERA I)
- Q²>1 GeV

 ZEUS Coll. DESY 07-070

 H1 Coll.
 DESY 04-032

 ZEUS Coll.
 DESY 07-063

 ZEUS Coll.
 DESY 06-226

Method of identification:

- dE/dx
- Distance of closest approach DCA

Deuteron and anti-deuteron

Bound state of two nucleons or multi-quark particle? In elementary collisions - overlap of wave function in the final state,

- Not included in the standard hadronisation model, i.e. JETSET type
- Anti-d was observed in e+e- by ARGUS, OPAL, ALEPH, CLEO
- Observation of anti-d in ep photoproduction (H1)
- First measurement of d and \overline{d} in DIS (ZEUS) (high background— beam-gas, beam-wall, secondary interactions)

The **coalescence model** gives the cross section for formation of an object with A nucleons

 $\frac{E_A}{\sigma_{tot}} \frac{d^3 \sigma_A}{d^3 P_A} = B_A \left(\frac{E_N}{\sigma_{tot}} \frac{d^3 \sigma_N}{d^3 p_N} \right)^A \qquad p$

The coalescence parameter $B_2 \propto \frac{1}{V} \propto \frac{1}{R^3}$ where *R* – source radius

$$p_N = P_A / A \qquad A = 2$$

Number of events:			
р	1.52 10 ⁵		
р	1.62 10 ⁵	← tracking efficiency	
d	177 ± 17		
d	53 ± 7		

No d(d) is found in current region of Breit frame in agreement with low rate in e^+e^- . Only 2.5% of p(p) is emitted in this region.

Deuteron yield is suppressed by a factor of ~1000 w.r.t. protons **ZEUS** Arbitrary scale (b) 0.6 (a) 0.6 0.4 0.4 0.2 0.2 ēġ 0 n 10⁻⁵ 10⁻³ 10² Q² (GeV²) **10⁻⁴** 1 10

d(d) distributions are consistent with those for $p(\overline{p})$ except anti-d as function of scattered electron energy (E_e') (related to W.)

T.Tymieniecka

Hadron07

The coalescence parameter B₂

• larger for d than for anti-d

 $\frac{E_d}{\sigma_{tot}} \frac{d^3 \sigma_d}{d^3 P_d} = B_2 \left(\frac{E_p}{\sigma_{tot}} \frac{d^3 \sigma_p}{d^3 p_p} \right)^2$

similar for DIS and for photoproduction

T.Tymieniecka

Hadron07

Bose-Einstein correlation

Comparison of DIS and LEP results

Results for KK pairs are sensitive to resonances decaying into KK pairs,

in particular for $K^0 K^0$ the λ parameter which describes the strength of BE correlation:

$\lambda = 1.16 \pm 0.29 \rightarrow$	corrected 0.70 ± 0.19
r=0.61 ± 0.08	0.63 ± 0.09

Conclusions: BE correlation — the same for ep and e+e-

Strange particle production

Baryon-to-meson ratio

$$rac{N(\Lambda) + N(ar{\Lambda})}{N(K_{*}^{0})}$$

well described by MC for **DIS** and direct photoproduction but not for resolved photons or 'fireball' type of events.

T.Tymieniecka

Strange particle production in "fireball-like" events

Summary and conclusions

- HERA provided a wealth of high precision hadronic data,
- Hadron scaled momentum x_p distributions support the concept of quark fragmentation universality, but NLO + FF predictions based on e⁺e⁻ data fail to describe the distributions as a function of Q²,
- First observation of d and anti-d in DIS
 - rate of d is three order of magnitude smaller than for p,
 - rate of d is three times larger than for anti-d
 - coalescence model : smaller production volume than AA and e⁺e⁻ cross section (or B_2) the same for DIS and γp ,
- Size of particle production volume from Bose-Enstein correlation is similar to those estimated from e⁺e⁻ data,
- In resolved photon region the ratio of baryon-to-meson larger than expected.

Additional plots

Scaling violation in x_p intervals

Both LEPTO and ARIADNE fail to describe the data for the entire Q² region.

Energy (Q²) increases more soft particles are produced.

At higher Q² and higher X_p data fall faster than predicted by leading order MC models.

particle-to-particle yields

Summary:

- first observation of d production, of anti-d in DIS,
- rate of anti-d is smaller than d,
- rate of p is consistent with anti-p, no chance to investigate small baryon-antibaryon asymmetry,
 - if the coalescence model is used the source volume is different for d and anti-d, and different than in e⁺e⁻.