

M.Kapishin, JINR

- On behalf of the H1 and ZEUS Collaborations
- □ Inclusive diffractive DIS
- □ Diffractive PDFs from combined QCD Fit to inclusive diffractive DIS and Dijets
- Dijets and open charm in DIS and photoproduction: test of QCD factorization
- Exclusive vector meson production and DVCS

Diffractive DIS at HERA

Diffractive DIS: Probe structure of color singlet exchange $\rightarrow F_2^D$

Diffraction at HERA: from soft to hard

□ Soft processes at HERA: Q²~0, |t|<1GeV² total γp cross section, low mass Vector Meson photoproduction → similar to soft hadron diffraction

→ Regge approach to describe energy and tdependences: exchange of IP and IR trajectories

□ Transition to hard QCD processes:
→hard scales Q², E^{jet}, t, M_q

Diffraction in QCD: color singlet exchange

Large $Q^2 \rightarrow \gamma^*$ probes parton structure of IP

Large E_t^{jet} photo-production \rightarrow test QCD collinear factorization

Large $M_q \rightarrow$ charm, beauty photo-production

Large |t| → sensitive to BFKL dynamics

Color dipole approach \rightarrow 2 gluon exchange; transition to non pQCD \rightarrow "saturation" at low Q²

Large rapidity gap between leading proton p' and X

by color singlet exchange: Momentum fraction of color singlet carried by struck quark:

$$x_{\rm IP} = \frac{q \cdot (p - p')}{q \cdot p} \approx \frac{Q^2 + M_X^2}{Q^2 + W^2}$$
$$\beta = \frac{x}{x_{\rm IP}} \approx \frac{Q^2}{Q^2 + M_X^2}$$

У

Selection of diffraction at HERA

ZEUS: M_x method

Leading Proton Spectrometers ZEUS and H1

□ free of p-dissociation background

□ t-measurement
 □ x_{IP} measurement

$$x_{\rm IP} = 1 - \frac{E_{\rm p}'}{E_{\rm p}}$$

□ access to high x_{IP} range (IP+IR) □ but low acceptance → low statistics

HERA-2: H1 Very Forward Proton Spectrometer at ~220m

 \rightarrow large acceptance at low x_{IP}

- \Box flat vs ln M_x² for diffractive events
- non-diffractive events subtracted from fit
- ☐ contamination from p-dissociation ep→eXY, M_Y < 2.3 GeV</p>

Diffractive Reduced Cross Section

Assumption: proton vertex factorization for IP and IR

$$F_{2}^{D(4)}(\beta, Q^{2}, x_{IP}, t) = f_{IP}(x_{IP}, t) \cdot F_{2}^{IP}(\beta, Q^{2}) + f_{IR}(x_{IP}, t) \cdot F_{2}^{IR}(\beta, Q^{2})$$

$$P \text{ and IR flux (Regge motivated):} \quad f_{IP}(x_{IP}, t) = \frac{e^{B_{IP}t}}{x_{IP}^{2\alpha_{IP}(t)-1}} \quad \alpha_{IP}(t) = \alpha_{IP}(0) + \alpha_{IP}'t$$

$$Integrate \text{ over } t \text{ while proton is not measured} \rightarrow \sigma_{r}^{D(3)}$$

- t dependence does not change with β or Q^2 at fixed $x_{IP} \rightarrow$ consistent with proton vertex factorization
- α'_{IP} is not "soft" (α'_{IP} (soft)~0.25 GeV⁻²)

ZEUS: $\alpha'_{IP} = -0.03 \pm 0.07(stat.) \pm_{0.08}^{0.04} (syst.) GeV^{-2}$

$$B_{IP} = 7.2 \pm 0.7(stat.) \pm_{0.7}^{1.4} (syst.) GeV^{-2}$$

from Regge fit of $F_2^{D(4)}$

Diffraction and Vector Meson Production at HERA

ZEUS

Diffractive cross section:

ZEUS Mx

$$\frac{d\sigma^{diff}}{dM_X^2} \propto (W^2)^{2\overline{\alpha}_{IP}-2}$$

$$x_{IP}F_2^D \propto A(\beta, Q^2) \cdot x_{IP}^{2-2\alpha_{IP}(t)}$$

Pomeron intercept $\alpha_{IP}(0)$:

- data consistent within the errors
 with IP flux independent of Q² (H1 and ZEUS) and β (H1)→ support
 proton vertex factorization
- IP intercept is somewhat higher than α_{IP}(soft) ~1.096 extracted from soft hadron-hadron scattering

Comparing LRG with LPS data

LRG/LPS ratio independent of Q², β , x_{IP} within errors

LRG and LPS data are consistent with proton vertex factorization \rightarrow • x_{IP} , t and M_Y dependences factorise from the Q^2 and β dependences

0.05

0.05

Sugar S

10

Fair agreement between H1 and ZEUS results obtained with LRG, M_x and LPS methods (difference in normalization within 20%)

Diffraction and Vector Meson Production at HERA

0.01

0.02

444

 Q^2 (GeV²)

10

ŧ

10 1

mailt

10

10² 1

.....

40 1

10

102

Factorization in Diffractive DIS

QCD hard scattering collinear factorization:

$$\sigma^{D}(\gamma^{*}p \to Xp) = \sum_{parton_{i}} f_{i}^{D}(x,Q^{2},x_{IP},t) \cdot \sigma^{\gamma^{*}i}(x,Q^{2})$$

 $\sigma^{\gamma^{*i}}$ universal hard scattering cross section (same as in inclusive DIS) f_i^D - Diffractive Parton Distribution Function \rightarrow obey DGLAP, universal for diffractive *ep* DIS (inclusive, Dijets, Charm)

Extract DPDFs from QCD fit to inclusive diffractive DIS

□ Test DPDFs in diffractive Final States (Boson Gluon Fusion)

□ Assumption: Proton vertex factorization → shape of diffractive PDFs independent of x_{IP} and t Diffraction and Vector Meson Production at HERA

 LRG measurements: → best precision: 5% (stat), 5%(syst)

•Study β and Q² dependence at fixed $x_{IP} \rightarrow NLO$ DGLAP fit to extract diffractive PDFs for quark singlet and gluon

OPDFs from Inclusive Diffractive DIS

 Gluon DPDF → from positive scaling violations → larger uncertainty

 At high momentum fraction QCD evolution is driven by quark radiation
 no sensitivity to gluon DPDF

• DGLAP Fit constrains quark singlet DPDF and gluon DPDF at low z

Two DPDF parameterizations: Fit A and Fit B

Diffractive Final States at HERA

□ Focus on LRG method: Large rapidity gap between leading proton p' and X

□ X includes Diffractive Final States: Dijets, Charm

 x_{IP} - momentum fraction of proton carried by color singlet exchange z_{IP} - momentum fraction of color singlet carried by parton entering hard sub-process

DPDFs from Diffractive DIS vs Dijets

z_{IP} distribution is the most sensitive to gluon DPDF
→ difference between NLO H1
2006 Fit A and Fit B at high z_{IP}

• H1 Dijet data are in better agreement with NLO predictions based on Fit B

• ZEUS Dijet data are consistent with DPDFs from H1 2006 Fit B and LPS data (ZEUS LPS Fit)

• Statistics sufficient to make combined QCD Fit to inclusive diffractive DIS and Dijets

Combined Fit to Diffractive DIS and Dijets

Aim: one set of NLO DPDFs which describes inclusive and Dijet data

- Parameterization of quark and gluon DPDFs at Q_0^2 :
- NLO DGLAP evolution:

→ Data are consistent with QCD collinear factorization

DPDFs from Diffractive DIS and Dijets

Combined Fit to inclusive and Dijet data

- H1 2007 Jets DPDF
 exp. uncertainty
 exp. + theo. uncertainty
 H1 2006 DPDF fit A
 H1 2006 DPDF fit B
- H1 Combined Fit constrains quark and gluon densities over wide range on z_{IP}
- Gluon density from Combined Fit is close to result of Fit B to inclusive diffractive data

Test of Factorization: Dijet Photo-production

□ Factorization in Dijet PhP expected to be valid in direct photo-production but broken in resolved photoproduction (secondary re-scattering, multi-pomeron exchanges)

Diffractive Dijet Photo-production H1 Diffractive Dijet Photoproduction Resolved y H1 2006 Fit B DPDF H1 Data enriched FR NLO×(1+ δ_{had}) ×0.5 correlated Direct y uncertainty - FR NLO ×0.5 enriched 500 600 dơ/dz¦ets (pb) do/dx^{jets} (pb) H1 **H1** b) a) 400 400 300 200 200 100 **NLO×0.5** NLO×0.5 0 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 Zip yjets

• NLO QCD (Frixone): H1 2006 Fit B; μ² = (E^{*}_t)²

 Dijets in PhP are described in shape by NLO QCD predictions, but suppressed by a factor ~0.5 for direct and resolved γ

→ Factorization breaking for Dijets in PhP

Diffractive Dijet Photo-production

• NLO QCD (Klasen&Kramer): H1 2006 Fit A & B, ZEUS LPS Fit $\mu^2 = (E_t^*)^2$

 Dijets in PhP are only weakly suppressed by a factor of ~0.8 for direct and resolved γ

→ No factorization breaking

Comparison ZEUS with H1:

harder E^{jet} cut

ZEUS: $E_t^{jet} > 7.5 \text{ GeV}, H1: E_t^{jet} > 5 \text{ GeV}$

- 20% H1/ZEUS LRG normalization uncertainty
- 20% difference in H1/ZEUS NLO calculations

Kaidalov & Khoze R=0.34 suppression for resolved γ

Test of Factorization: Charm in DIS and PhP

DIS and direct photo-production

Resolved photo-production

- Dominating process: Boson Gluon Fusion
 directly sensitive to gluon DPDF
- Hard scale is provided by mass of Charm quark
 → probing low and medium range on z_{IP}
- H1 and ZEUS: Diffractive D*

• H1: First measurement of diffractive Charm using complimentary Lifetime method (impact parameter to primary vertex)

Charm contribution to $F_2^D \sim 20\% \rightarrow$ comparable with charm fraction in inclusive DIS

method):

data consistent with NLO QCD predictions

→ support QCD collinear factorization

Diffraction and Vector Meson Production at HERA

ZEUS D

------ H1 2006 DPDF Fit B

H1 2006 DPDF Fit A

Diffractive Charm in Photo-production

Diffractive DIS / hadron final states: Summary

- □ Many new measurements of inclusive diffraction at HERA
- →good agreement between different methods and experiments
- Adata are consistent with proton vertex factorization
- □ Combined QCD Fit to inclusive diffractive DIS and Dijets constrains quark and gluon DPDFs in a wide range on fractional momentum
- →consistent picture of diffractive inclusive DIS and Dijets within QCD factorization approach
- □ Diffractive Dijet photo-production results need clarification
- → breaking of QCD factorization in Diffractive Dijet photo-production?
- → difference between experiments or NLO calculations?
- □ Diffractive Charm DIS and photo-production data are consistent with predictions based on NLO QCD Fit to inclusive diffractive DIS

Vector Meson production and DVCS

Exclusive VM production:

- transition from soft to hard IP exchange with increasing of M_{VM} , Q^2 , t
- Regge theory for soft processes (IP trajectory)
- pQCD description → two gluon exchange

Deeply Virtual Compton Scattering (DVCS):

- fully calculable in pQCD
- no uncertainty due to VM wave function
- access to generalized (skewed) Parton Distributions \rightarrow GPD(x₁,x₂)

VM photo-production: W-dependence

VM production and DVCS: $\delta(Q^2+M^2)$

 $\sigma \propto W^{\delta}\left(\rho,\phi,J/\psi,DVCS\right)$

- Transition from soft to hard regime when Q²+M² increases
- Saturation at high $Q^2+M^2 \rightarrow$ different from F_2 behavior at low x

VM production and DVCS: b(Q²+M²)

Universal behavior with scale Q²+M² for ρ , ϕ ,J/ ψ ,DVCS

Elastic p-mesons in DIS: $R = \sigma_L / \sigma_T (Q^2, W)$

DVCS: Beam Charge Asymmetry

Interference between DVCS (QCD process) and Bethe-Heitler (QED process) $d\sigma = d\sigma^{BH} + d\sigma^{DVCS} \pm \text{Interference}$ for beam lepton charge (+/-) BCA= $(\sigma^+ - \sigma^-)/(\sigma^+ + \sigma^-) = p_1^* \cos(\phi) + \dots$

DVCS: QCD interpretation

•Correct for Q² dependence of propagator term and b-slope

- Skewing factor R~2 for DVCS, for inclusive DIS expected R=1
- QCD based model is able to describe Q²-dependence of S and R

DVCS: t and W-dependences

• W and t-dependences indicate hard process (similar to J/ψ)

Effective Pomeron trajectory

Elastic p-meson photo-production

H1 PRELIMINARY

ZEUS: $\alpha_{\rm P}(0) = 1.096 \pm 0.021$

H1 '05 Preliminary 1.20 H1 '05 fit Zeus '95 1.15 Zeus '95 fit Donnachie-Landshoff 1.10

 $\alpha'_{P} = 0.125 \pm 0.038 \text{ GeV}^{-2}$ $\alpha'_{P} = 0.116 \pm 0.027^{+0.036}_{-0.046} \text{ GeV}^{-2}$

• slope α'_{P} is smaller than value 0.25 GeV⁻² extracted from soft hadron-hadron scattering

VM production and DVCS: Summary

New high statistics measurements of Vector Mesons in DIS and photo-production and DVCS process at HERA:

- W-dependence of cross section becomes stronger with increasing of hard scale Q²+M²
- Exponential slope of t-distribution decreases with Q²+M²
- σ_L/σ_T ratio increases with Q² and is independent of W
- Effective Pomeron trajectory has smaller slope than that extracted from soft hadron-hadron scattering
- W and t dependences of DVCS indicate hard process
- First measurement of DVCS beam charge asymmetry at HERA, process is sensitive to GPDs