## Low-x Dynamics through Jet Studies



#### Jozef Ferencei

Institute of Experimental Physics SAS, Košice



On behalf of the H1 and ZEUS collaborations



#### Outline:

- Introduction
- Multijet production at low-x in DIS
- Angular correlation between jets
- Forward jets
- Summary

#### Parton Dynamics at low x in e<sup>±</sup>p collisions

Different approximations to the summation of the perturbative expansion of parton evolution:  $\blacksquare DGLAP \Sigma (\alpha_5 \ln Q^2)^n$ 



2 Jets from the hard subprocess

Jets initiated by radiated gluons

- strong ordering in virtuality, i.e.  $k_{T1}^2 \leftrightarrow k_{T2}^2 \leftrightarrow ... \leftrightarrow Q^2$
- weak ordering in x, i.e.

$$X_1 > X_2 > ... > X_{Bj}$$

- works very well at large Q2
- expected to fail at low Q2 and x
- BFKL  $\sum (\alpha_s \ln 1/x)^n$ 
  - no k<sub>T</sub> ordering
  - strong ordering in x, i.e.  $x_1 \gg x_2 \gg ... \gg x_{Bi}$
  - should be applicable at low x
- CCFM  $\alpha_s \ln Q^2 \& \alpha_s \ln 1/x$ 
  - angular ordering,  $\Theta_{n} >> \Theta_{n-1} >> ... >> \Theta_{1}$
  - expected to be valid in whole x,  $Q^2$  range

DGLAP well established at HERA (PDFs, QCD fits,  $F_2$ ) -> look into measurements with better sensitivity to BFKL effects. Important for LHC: at large Q<sup>2</sup> and x HERA PDFs can be evolved using DGLAP, but are HERA data described by DGLAP down to low x?

#### NLO QCD Calculations and Monte Carlo Models













#### Multijet (dijets, trijets) Production at Low x

 $O(\alpha_5^2)$ 



 $O(\alpha_5^3)$ 



Kinematic selection to enhance (unordered) gluon radiation and to study parton dynamics (at low-x):

select phase space for evolution in x (BFKL):

$$x_{Bj} \ll x_{jet} = E_{jet}/E_p$$

suppress phase space for evolution in Q<sup>2</sup> (DGLAP):

Hadronic Center-of-Mass

Comparison with NLO at order  $O(\alpha_S^2)$  and  $O(\alpha_S^3) \rightarrow \text{NLOJET}$ , DISENT Comparison with Monte Carlo's LO-PS with/out  $\gamma_{res} \rightarrow \text{CDM-DjangoH}$ , RAPGAP

H1 compares at parton level, ZEUS compares at hadron level

H1-prelim-06-034

 $\int Ldt = 44.2 \text{ pb}^{-1} (99-00 \text{ data})$  $10^{-4} < x_{Bj} < 10^{-2}, 5 < Q^2 < 80 \text{ GeV}^2$ 

At least 3 jets with:  $E_{Tjet1}$ > 4 GeV  $E_{Tjet2} + E_{Tjet3} > 9 \text{ GeV}$   $-1 < \eta_{lab} < 2.5$  one jet -1 <  $\eta_{lab}$  < 1.3

Jet reconstruction: inclusive  $k_T$  algorithm in  $\gamma^*p$  CMS

NLO predictions error band: varying renormalisation scale and factorisation scale simultaneously by a factor 2 and 0.5, resp.  $(\mu_r = \mu_f = (\sum p^*_{Ti})/m$ , i=1,N<sub>jet</sub>, m=3 or 4)

• NLOjet++  $O(\alpha_s^3)$  - describes  $x_{Bj}$  dependence with possible exception of very low x bin



H1-prelim-06-034







- CDM (DjangoH) good description
- Rapgap (Dir+Res) too low for  $\eta_1$ - $\eta_2$
- $O(\alpha_s^2)$  prediction too low.  $O(\alpha_s^3)$  significant improvement, but for forward rapidities still low

 $C_{\text{had}}$  = hadronisation corr. factors



ZEUS: DESY-07-062

Renormalisation and factorisation scales:  $\mu_r^2 = \mu_f^2 = (\langle E^2_{T,HCM} \rangle + Q^2)/4$   $\langle E_{T,HCM} \rangle = \text{average } E_T \text{ of two (three) highest jets.}$ 

NLOjet++  $O(\alpha_S^3)$ : good description of the data (lowest Q<sup>2</sup>=10 GeV<sup>2</sup> instead of 5 GeV<sup>2</sup> for H1)

Three-jet Cross-section - Forward jet selection





From LO to NLO factor of 2 at low x. NLO in agreement with data.





From LO to NLO a factor of 3.5 at low x, but NLO still factor of 3 below data.

H1-prelim-06-034

- central jet : -1 <  $\eta_{iet}$  < 1
- forward jet:  $\eta_{jet} > 1.73$   $x_{jet} = E^*_{jet}/E_{p,beam} > 0.035$
- improvement going from  $\alpha_s^2$  (1 gluon) to  $\alpha_s^3$ (2 gluons)
- discrepancy at lowest x<sub>Bi</sub> and forward rapidities is in a region where unordered gluon emissions are expected to be important!
- need NNLO or unordered gluon radiation?



Azimuthal separation between two jets with the highest hadronic center of mass  $E_{\mathsf{T}}$ 

 $\bullet \Delta \Phi^*$  sensitive to parton evolution scheme, gluon radiation (jets are backto-back without gluon emissions)

 ZEUS 82 pb<sup>-1</sup> dijets

--- NLOjet: O(o<sup>2</sup><sub>s</sub>)⊗ C<sub>had</sub> --- NLOjet: O(o<sup>3</sup><sub>s</sub>)⊗ C<sub>had</sub>

jet energy scale uncertainty

 $1/18 < \mu_r^2/(\mathbf{Q}^2 + \mathbf{E}_T^2) < 1$ 

trijets NLOjet:  $O(\alpha_S^3) \otimes C_{had}$ 

ZEUS: DESY-07-062

<u>dijets:</u>

description improved going from  $O(\alpha_s^2)$  to  $O(\alpha_s^3)$ 

trijets:

good description by pQCD, but rather large scale uncertainities indicating the need for higher orders

#### Azimuthal Correlations in Dijets







H1-prelim-06-032

H1 99-00 data (64 pb<sup>-1</sup>): DIS: 5 < Q<sup>2</sup> < 100 GeV<sup>2</sup>

2 jets with: -1 <  $\eta_{jet}$  < 2.5 (LAB)  $E^*_{Tj}$  > 5 GeV (HCM)

$$\Delta \Phi^* = |\Phi_{jet1} - \Phi_{jet2}|$$
in HCM

- one parton radiation (NLO 2-jet) not enough to describe the data
- two parton radiation (NLO 3-jet) still systematically low at low  $x_{Bj}$ , low  $\Delta \Phi^*$

#### Azimuthal Correlations in Dijets

H1-prelim-06-032



Comparison with Monte Carlo models (broader  $\Delta \Phi^*$  spectrum expected from BFKL, CCFM):

- Cascade with J2003 pdf describes data except in lowest x<sub>Bi</sub> bin
- Cascade with A0 pdf fails in all x<sub>Bj</sub> bins
- CASCADE predictions depend on unintegrated gluon density -> could be determined

#### Forward Jets

H1 data in the  $10^{-4} < x < 4 \times 10^{-3}$   $p_{T,jet} > 3,5 GeV$  kinematic region:  $5 < Q^2 < 85 GeV^2$   $7^{\circ} < \Theta_{jet} < 20^{\circ}$ 





 $x_{jet} = E_{jet}/E_p > 0.035$   $0.5 < (p_{T,jet})^2/Q^2 < 2$ to suppress DGLAP and enhance BFKL behaviour



 $L = 13.7 \text{ pb}^{-1}$ 

- LO-DGLAP fails
- NLO-DGLAP is a factor 2 too low
- Monte Carlo models with extra parton radiation provide an improved description of the data
- improved description in case of inclusion of a resolved-photon component (-> RAPGAP: DIR+RES)

#### Forward Jets





ZEUS: DESY-07-100

NLO (μ<sub>R</sub> =μ<sub>F</sub> = Q)
LO
NLO Uncertainty
Had. Cor. Uncertainty

- LO-DGLAP fails completely
- NLO-DGLAP well below data at low x (as seen by H1)

#### Forward Jet and Dijet

ZEUS: DESY-07-100



New measurement 98-00 data:  $2 \cdot \eta_{jet} \cdot 4.3$  (Fwd Plug Calorimeter)  $20 \cdot Q^2 \cdot 100 \text{ GeV}^2$   $10^{-4} \cdot x_{Bj} \cdot 5 \times 10^{-2}$   $x_{jet} > 0.036 \rightarrow \text{enhance BFKL}$  expected behaviour

$$\Delta \eta_1 = \eta_2 - \eta_1$$
  
 $\Delta \eta_2 = \eta_{fwd} - \eta_2$ 



- discrepancy at low  $\Delta \eta_1$  and  $\Delta \eta_2$ , when all 3 jets tend to go forward
- need for additional higher orders or BFKL resummation

#### Forward Jet and Dijet

ZEUS: DESY-07-100

$$\Delta \eta_1 = \eta_2 - \eta_1$$
  
 $\Delta \eta_2 = \eta_{fwd} - \eta_2$ 







- CDM (Ariadne tuned) describes data reasonably well
- breaking of k<sub>T</sub> ordering best modeled by CDM

### Summary

- Multi- and forward- jets production has been measured in the region  $x_{\rm BJ} \sim 10^{-4}$  and low Q² where NLO DGLAP pQCD is expected to fail
- Agreement between data and DGLAP NLO QCD calculations significantly improved going from  $O(\alpha_s^2)$  to  $O(\alpha_s^3)$ . Nevertheless BFKL enhanced forward jet data at low  $x_{Bj}$  are not described even by  $O(\alpha_s^3)$
- DGLAP based models fail to describe inclusive forward jet measurements, dijet and trijet correlations
- CASCADE (CCFM) depends on unintegrated PDF. Fails to describe inclusive forward jet cross sections
- CDM as implemented in Ariadne (tuned) provides a good description of most datasets

# Backup Slides

## Kinematic Coverage of Colliders

