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Abstract
The contribution of both inclusive and exclusive cross-section data from HERA
to our knowledge of parton distribution functions is reviewed and future prospects
are outlined.

1 Introduction

The kinematics of lepton hadron scattering is described in terms of the variablesQ2, the invariant mass
of the exchanged vector boson, Bjorkenx, the fraction of the momentum of the incoming nucleon taken
by the struck quark (in the quark-parton model), andy which measures the energy transfer between the
lepton and hadron systems. The differential cross-sectionfor the neutral current (NC) process is given in
terms of the structure functions by

d2σ(e±p)

dxdQ2
=

2πα2

Q4x

[

Y+ F2(x,Q2) − y2 FL(x,Q2) ∓ Y− xF3(x,Q2)
]

,

whereY± = 1± (1− y)2. The structure functionsF2 andxF3 are directly related to quark distributions,
and theirQ2 dependence, or scaling violation, is predicted by pQCD. Forlow x, x ≤ 10−2, F2 is
sea quark dominated, but itsQ2 evolution is controlled by the gluon contribution, such that HERA
data provide crucial information on low-x sea-quark and gluon distributions. At highQ2, the structure
functionxF3 becomes increasingly important, and gives information on valence quark distributions. The
charged current (CC) interactions also enable us to separate the flavour of the valence distributions at
high-x, since their (LO) cross-sections are given by,

d2σ(e+p)

dxdQ2
=

G2
F M4

W

(Q2 + M2
W )22πx

x
[

(ū + c̄) + (1 − y)2(d + s)
]

,

d2σ(e−p)

dxdQ2
=

G2
F M4

W

(Q2 + M2
W )22πx

x
[

(u + c) + (1 − y)2(d̄ + s̄)
]

.

Parton Density Function (PDF) determinations are usually global fits [1–3], which use fixed target
DIS data as well as HERA data. In such analyses, the high statistics HERA NCe+p data have deter-
mined the low-x sea and gluon distributions, whereas the fixed target data have determined the valence
distributions. Now that high-Q2 HERA data on NC and CCe+p ande−p inclusive double differential
cross-sections are available, PDF fits can be made to HERA data alone, since the HERA highQ2 cross-
section data can be used to determine the valence distributions. This has the advantage that it eliminates
the need for heavy target corrections, which must be appliedto theν-Fe andµD fixed target data. Fur-
thermore there is no need to assume isospin symmetry, i.e. that d in the proton is the same asu in the
neutron, since thed distribution can be obtained directly from CCe+p data.

The H1 and ZEUS collaborations have both used their data to make PDF fits [4]. In Section 2 we
review the published PDF analyses paying particular attention to the treatment of correlated systematic
errors. In Section 3 we present the preliminary results of a combination of ZEUS and H1 data. In
Section 4 we discuss the improvement in our knowledge of the gluon PDF, which comes from the addition
of jet data to the PDF fits, and we present the measurements ofαs which have been made using HERA
jet data. In Section 5 we present preliminary fits using HERA-II data and in Section 6 we conclude by
looking at the propsects for the future.
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2 Comparing ZEUS and H1 published PDF analyses

Full details of the analyses are given in the relevant publications, in this contribution we examine the
differences in the two analyses, recapping only salient details. For both HERA analyses the QCD pre-
dictions for the structure functions are obtained by solving the DGLAP evolution equations [5] at NLO
in theMS scheme with the renormalisation and factorization scales chosen to beQ2. These equations
yield the PDFs at all values ofQ2 provided they are input as functions ofx at some input scaleQ2

0.
The resulting PDFs are then convoluted with coefficient functions, to give the structure functions which
enter into the expressions for the cross-sections. For the ZEUS analysis, the coefficient functions are
calculated using the general-mass variable flavour number scheme of Roberts and Thorne [6]. For the
H1 analysis, the zero-mass variable flavour number scheme isused.

The HERA data are all in a kinematic region where there is no sensitivity to target mass and
higher twist contributions, but a minimumQ2 cut must be imposed to remain in the kinematic region
where perturbative QCD should be applicable. For ZEUS this is Q2 > 2.5 GeV2, and for H1 it is
Q2 > 3.5 GeV2. Both collaborations have included the sensitivity to thiscut as part of their model
uncertainties.

In the ZEUS analysis (called the ZEUS-JETS fit), the PDFs foru valence,xuv(x), d valence,
xdv(x), total sea,xS(x), the gluon,xg(x), and the difference between thed andu contributions to the
sea,x(d̄ − ū), are each parametrized by the form

p1x
p2(1 − x)p3P (x), (1)

whereP (x) = 1+p4x, atQ2
0 = 7GeV2. The total seaxS = 2x(ū+d̄+s̄+c̄+b̄), whereq̄ = qsea for each

flavour,u = uv+usea, d = dv+dsea andq = qsea for all other flavours. The flavour structure of the light
quark sea allows for the violation of the Gottfried sum rule.However, there is no information on the shape
of thed̄− ū distribution in a fit to HERA data alone and so this distribution has its shape fixed consistent
with the Drell-Yan data and its normalisation consistent with the size of the Gottfried sum-rule violation.
A suppression of the strange sea with respect to the non-strange sea of a factor of 2 atQ2

0, is also imposed
consistent with neutrino induced dimuon data from CCFR. Parameters are further restricted as follows.
The normalisation parameters,p1, for thed andu valence and for the gluon are constrained to impose
the number sum-rules and momentum sum-rule. Thep2 parameter which constrains the low-x behaviour
of theu andd valence distributions is set equal, since there is no information to constrain any difference.
In the present fits to HERA-I data it is also necessary to constrain the high-x sea and gluon shapes,
because HERA-I data do not have high statistics at large-x, in the region where these distributions are
small. The sea shape has been restricted by settingp4 = 0 for the sea, but the gluon shape is constrained
by including data on jet production in the PDF fit, as discussed in Sec. 4. Finally the ZEUS analysis
has 11 free PDF parameters. ZEUS have included reasonable variations of these assumptions about the
input parametrization in their analysis of model uncertainties. The strong coupling constant was fixed to
αs(M

2
Z) = 0.118 [7]. Full account has been taken of correlated experimentalsystematic errors by the

Offset Method, as described in ref [3,8].

For the H1 analysis (called the H1 2000 PDF fit), the value ofQ2
0 = 4GeV2, and the choice of

quark distributions which are parametrized is different. The quarks are considered asu-type andd-type
with different parametrizations for,xU = x(uv +usea + c), xD = x(dv +dsea +s), xŪ = x(ū+ c̄) and
xD̄ = x(d̄ + s̄), with qsea = q̄, as usual, and the the form of the quark and gluon parametrizations given
by Eq. 1. ForxD̄ andxŪ the polynomial,P (x) = 1.0, for the gluon andxD, P (x) = (1+p4x), and for
xU , P (x) = (1+p4x+p5x

3). The parametrization is then further restricted as follows. Since the valence
distributions must vanish asx → 0, the low-x parameters,p1 andp2 are set equal forxU andxŪ , and for
xD andxD̄. Since there is no information on the flavour structure of thesea it is also necessary to setp2

equal forxŪ andxD̄. The normalisation,p1, of the gluon is determined from the momentum sum-rule
and thep4 parameters forxU andxD are determined from the valence number sum-rules. Assuming
that the strange and charm quark distributions can be expressed asx independent fractions,fs andfc, of



thed andu type sea, gives the further constraintp1(Ū) = p1(D̄)(1 − fs)/(1 − fc). Finally there are 10
free parameters. H1 have also included reasonable variations of these assumptions in their analysis of
model uncertainties. The strong coupling constant was fixedto αs(M

2
Z) = 0.1185 and this is sufficiently

similar to the ZEUS choice that we can rule it out as a cause of any significant difference. Full account
has been taken of correlated experimental systematic errors by the Hessian Method, see ref. [8].

The different treatments of correlated experimental systematic errors deserves a little more di-
cussion since modern deep inelastic scattering experiments have very small statistical uncertainties, so
that the contribution of systematic uncertainties becomesdominant and consideration of point to point
correlations between systematic uncertainties is essential.

For both ZEUS and H1 analyses the formulation of theχ2 including correlated systematic uncer-
tainties is constructed as follows. The correlated uncertainties are included in the theoretical prediction,
Fi(p, s), such that

Fi(p, s) = FNLOQCD
i (p) +

∑

λ

sλ∆sys
iλ

where,FNLOQCD
i (p), represents the prediction from NLO QCD in terms of the theoretical parametersp,

and the parameterssλ represent independent variables for each source of systematic uncertainty. They
have zero mean and unit variance by construction. The symbol∆sys

iλ represents the one standard deviation
correlated systematic error on data pointi due to correlated error sourceλ. Theχ2 is then formulated as

χ2 =
∑

i

[Fi(p, s) − Fi(meas)]2

σ2
i

+
∑

λ

s2
λ (2)

where,Fi(meas), represents a measured data point and the symbolσi represents the one standard devia-
tion uncorrelated error on data pointi, from both statistical and systematic sources. The experiments use
thisχ2 in different ways. ZEUS uses the Offset method and H1 uses theHessian method.

Traditionally, experimentalists have used ‘Offset’ methods to account for correlated systematic
errors. Theχ2 is formulated without any terms due to correlated systematic errors (sλ = 0 in Eq. 2) for
evaluation of the central values of the fit parameters. However, the data points are then offset to account
for each source of systematic error in turn (i.e. setsλ = +1 and thensλ = −1 for each sourceλ) and a
new fit is performed for each of these variations. The resulting deviations of the theoretical parameters
from their central values are added in quadrature. (Positive and negative deviations are added in quadra-
ture separately.) This procedure gives fitted theoretical predictions which are as close as possible to the
central values of the published data. It does not use the fullstatistical power of the fit to improve the
estimates ofsλ, and thus it is a more conservative method of error estimation than the Hessian method.

The Hessian method is an alternative procedure in which the systematic uncertainty parameterssλ

are allowed to vary in the main fit when determining the valuesof the theoretical parameters. Effectively,
the theoretical prediction is not fitted to the central values of the published experimental data, but these
data points are allowed to move collectively, according to their correlated systematic uncertainties. The
theoretical prediction determines the optimal settings for correlated systematic shifts of experimental data
points such that the most consistent fit to all data sets is obtained. Thus, in a global fit, systematic shifts
in one experiment are correlated to those in another experiment by the fit. In essence one is allowing
the theory to calibrate the detectors. This requires confidence in the theory, but more significantly, it
requires confidence in the many model choices (such as the parametrization atQ2

0) which go into setting
the boundary conditions for the theory .

To compare these two methods the ZEUS analysis has been performed using the Hessian method
as well as the Offset method and Fig. 1 compares the PDFs, and their uncertainties, using these two
methods. The central values of the different methods are in good agreement but the use of the Hessian
method results in smaller uncertainties, for a the standardset of model assumptions. However, model
uncertainties are more significant for the Hessian method than for the Offset method. The PDF parame-
ters obtained for different model choices can differ by muchmore than their experimental uncertainties,
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Fig. 1: PDFs atQ2 = 10GeV2, for the ZEUS analysis comparing the Offset and the Hessian methods.

xU

vxu

Ux

xD

vxd

Dx

xg

2 = 10 GeV2 Q
 
 ZEUS-JETS fit
 tot. uncert.
 
 H1 PDF 2000
 tot. exp. uncert.
 model uncert.

-410 -310 -210 -110 1

-410 -310 -210 -110 1

0

5

10

15

0

0.5

1

1.5

0

0.5

1

1.5

x

xf

ZEUS

0

5

10

15

20

-410 -310 -210 -110 1
0

5

10

15

20

x

xg

2 = 5 GeV2Q

2 = 20 GeV2Q

2 = 200 GeV2Q

0

5

10

15

20 ZEUS-JETS Fit

H1 PDF 2000

 total uncert.

 exp. uncert.

 total uncert.

H1+ZEUS
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uncertainties.

because each model choice can result in somewhat different values of the systematic uncertainty param-
eters,sλ, and thus a different estimate of the shifted positions of the data points. This results in a larger
spread of model uncertainty than is found in the Offset method, for which the data points cannot move.
Thus when the total uncertainty from both experimental and model sources is computed there is no great
difference between these two aproaches.

Fig. 2 compares the results of the H1 and ZEUS analyses and illustrates the comparability of the
ZEUS (Offset) total uncertainty estimate to the H1 (Hessian) experimental plus model uncertainty esti-
mate. Whereas the extracted PDFs are broadly compatible within errors, there is a noticeable difference
in the shape of the gluon PDFs. This can be traced to small but significant differences in theQ2 slope
of low-Q2 data. Thus there could be an advantage in combining ZEUS and H1 data into a single data
set [9], not just in terms of reducing statistical errors, but also in reducing systematic errors by using each
experiment to calibrate the other.

3 Combining ZEUS and H1 HERA-I data

Essentially, since ZEUS and H1 are measuring the same physics in the same kinematic region, one can
try to combine them using a ’theory-free’ Hessian fit in whichthe only assumption is that there is a true
value of the cross-section, for each process, at eachx,Q2 point. The systematic uncertainty parameters,
sλ, of each experiment are fitted to determine the best fit to thisassumption. Thus each experiment is
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Fig. 3: Left hand side: HERA-I combined data onσr as a function ofQ2 for NC e+p scattering, together with fixed target data,

for x bins across the whole measured kinematic plane. Right hand side: H1, ZEUS and HERA-I combined data onσr for NC

e+p scattering for low, middling and high-x.

calibrated to the other. This works well because the sourcesof systematic uncertainty in each experiment
are rather different. Once the procedure has been performedthe resulting systematic uncertainties on
each of the combined data points are significantly smaller than the statistical errors. Fig. 3 shows the
NC e+p reduced cross-sections from the HERA combination and compares the individual H1 and ZEUS
results with those of the combination so that the scale of theimprovement can be appreciated..

4 Adding exclusive jet cross-section data to PDF fits, and measurements ofαs(Mz)

The gluon PDF contributes only indirectly to the inclusive DIS cross sections, through the scaling viola-
tions. However it makes a direct contribution to jet cross sections through boson-gluon and quark-gluon
scattering, so that measurements of these cross sections can constrain the gluon density. Furthermore,
the addition of the jet production data allows an accurate determination ofαs(MZ) to be made in a
simultaneous fit forαs(MZ) and the PDF parameters.

In the ZEUS-JETS PDF fit, ZEUS neutral currente+p DIS inclusive jet cross sections and direct
photoproduction dijet cross sections have been used to constrain the gluon. The predictions for the
jet cross sections were calculated to NLO in QCD using the programme of Frixione and Ridolfi [10]
for photoproduced dijets and DISENT [11] for jet production in DIS. These calculations are too slow
to be used iteratively in the fit. Thus, they were used to compute LO and NLO weights,̃σ, which
are independent ofαs and the PDFs, and are obtained by integrating the corresponding partonic hard
cross sections1 in bins of ξ (the proton momentum fraction carried by the incoming parton), µF (the
factorisation scale) andµR (the renormalisation scale). The predictions for the NLO QCD cross sections
are then obtained by folding these weights with the PDFs andαs according to the formula

σ =
∑

n

∑

a

∑

i,j,k

fa(〈ξ〉i, 〈µF 〉j) · α
n
s (〈µR〉k) · σ̃

(n)
a,{i,j,k} , (3)

where the three sums run over the ordern in αs, the flavoura of the incoming parton, and the indices
(i, j, k) of theξ, µF andµR bins, respectively. This procedure reproduces the NLO predictions to better
than0.5%.

1For the dijet photoproduction cross sections, the weights also included the convolution with the photon PDFs.
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The cross-section predictions for photoproduced jets are sensitive to the choice of the input photon
PDFs. The AFG photon PDF [12] was used in the fits, but in order to minimise sensitivity to this choice,
the analysis was restricted to use only the ‘direct’ photoproduction cross sections. These are defined by
the cutxobs

γ > 0.75, wherexobs
γ is a measure of the fraction of the photon’s momentum that enters into

the hard scatter.

Fig 4 shows that the jet data constrain the gluon mainly in therange0.01 <
∼ ξ <

∼ 0.4, although
the momentum sum-rule ensures that the indirect constraintof these data is still significant at higherx.
The decrease in the uncertainty on the gluon distribution isstriking; for example atQ2 = 7 GeV2 and
x = 0.06 the uncertainty is reduced from17% to 10%. A similar decrease in uncertainty by a factor of
about two is found in this mid-x range, over the fullQ2 range.

The value ofαs(MZ) is fixed in most PDF fits but a simultaneous fit forαs(MZ) and the PDF
parameters can be made. Such fits to inclusive cross-sectiondata do not yield accurate values ofαs(MZ)
because of the strong correlation betweenαs(MZ) and the gluon shape which comes from the DGLAP
equations. However including jet data in the fit provides additional constraints. In the ZEUS-JETS fit
with freeαs(MZ) the value

αs(MZ) = 0.1183 ± 0.0027(exp.)

is obtained. Figure 5 illustrates the improved accuracy of the extraction ofαs(MZ) due to the inclusion
of the jet data. Theχ2 profile around the minimum is shown as a function ofαs(MZ) for the ZEUS-JETS
fit with αs free, and a similar fit in which the jet data are not included.

There have also been accurate determinations ofαs(MZ) using HERA jet data independent of
PDF fits and a combined ZEUS and H1αs(MZ) extraction has been made [13]. Fig. 6 compares this
combined value to those of the individual experiments and tothe world average, and also illustrates the
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running ofαs with Q2 as determined from the HERA experiments.

5 Adding HERA-II data to PDF fits

The determinations of the valence PDFs from HERA-I data are not as accurate as those from global fits,
but this is rapidly improving with the addition of HERA-II data. Fig 7 shows ZEUSe−p NC data from the
2004-6 running period with polarised beams. There are105pb−1 of negatively polarised,Pe = −0.27,
data and71.8pb−1 of positively polarised,Pe = +0.30, data. This data, ande−p CC data from 2004-
5, have been input to the ZEUS-JETS fit analysis framework andthis new fit is called the ZEUS-pol
fit [14]. The polarization of the data has been exploited to measure the neutral current vector and axial
vector couplings [14]. The results of this ZEUS-pol fit are superimposed on the data in Fig 7. The PDFs
extracted from the ZEUS-pol fit are compared to those of the ZEUS-JETS fit in Fig 8. The central values
of the fit are very compatible with the ZEUS-JETS fit, and theu-valence quark uncertainty is reduced
significantly at largex. The improvement is mostly in theu-valence quark at present because thee−p
data areu quark dominated at largex. We can expect improvements in thed-valence distribution when
the finale+p CC HERA-II data become available.



6 The future

We conclude with a look to the future. HERA data will continueto improve our knowledge of PDFs for
the next few years. Firstly, there is more jet data both from HERA-I [15–17] and from∼ 500pb−1 of
HERA-II [18,19] analyses, as shown in Fig 9. Inputting thesedata should improve determinations of the
high-x gluon.

It is also interesting to investigate the low-x gluon, where the theoretical formalism of the NLO
DGLAP equations may need extending to account forln(1/x) resummation [20–22] or even non-linear
terms [23]. Fig. 4 shows the gluon and the sea PDFs predicted by the ZEUS-JETS fit. ForQ2 >

∼ 7GeV2

the gluon PDF is larger than and steeper than the sea PDF, but for lowerQ2 it flattens and even becomes
valence-like. This counter intuitive behaviour may come from the use of the DGLAP equations outside
their region of applicability. At lowx the form of the DGLAP equations is such that one hasF2 ∼ xq
and dF2

d lnQ2 ∼ Pqgxg. The determination of the gluon distribution is coming fromthe measurement of the

scaling violations,dF2/d ln Q2, but these may be determined by either the gluon density or the splitting
function. Thus the odd behaviour of the gluon may in fact derive from use of an incorrect splitting
function. The use of a calculation of the low-x splitting functions which includesln(1/x) resummation
results in a steeper gluon PDF [20]. To settle these ambiguities definitively we need a measurement
of the gluon density at smallx which does not derive from the scaling violations ofF2, for example a
measurement ofFL or F cc̄

2 , F bb̄
2 .

So far the addition of charm data to PDF fits has made little impact [24] but there is new data
on F cc̄

2 from ZEUS, usingD production from82pb−1 of HERA-I running [25], and usingD∗ (andD)
production from162pb−1 [26] (and135pb−1 [27]) of HERA-II running. There is also H1 data onF cc̄

2

from 54pb−1 [28] of HERA-II data and these have been averaged together with the HERA-I data. Both
collaborations have also extractedF bb̄

2 , H1 using the same data sample as for their charm extraction and
ZEUS using39pb−1 of HERA-II data [29]. These data are shown in Fig. 10. In principle heavy quark
data should give information on the gluon distribution since heavy quarks are generated byg → cc̄
andg → bb̄. However, at the present time there is some theoretical disagreement about heavy quark
production schemes [30–32] such that these data may tell us more about the correct treatment of heavy
quarks than about PDFs.

The structure functionFL depends strongly on the gluon [33]. A model independent measurement
of FL requires data at different beam energies so in 2007 HERA was run at proton beam energies460
GeV and575 GeV.FL only makes strong contributions to the cross-section at high y, and measurements
at high-y require technically challenging identification of low energy scattered electrons. Both collab-
orations have been preparing for this challenge by extending their measurement capabilities to highy
using the nominal energy HERA-I and HERA-II running. Fig 11 shows data at high-y from ZEUS
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HERA-II 2006 running [34], and from H1 HERA-I running, at low-Q2 [35], and HERA-II running, at
high-Q2 [36]. These data not only pave the way for measurement ofFL, they are also interesting in their
own right since they access a new kinematic regime. Thus we look forward to exciting new information
on hadron structure from these measurements in the near future.

References

[1] A.D. Martin et al., Eur. Phys.JC23, 73 (2002).

[2] J. Pumplin et al., JHEP0207, 012 (2002).

[3] ZEUS Coll., S. Chekanov et al., Phys. RevD 67, 012007 (2003).

[4] ZEUS Coll., S. Chekanov et al., Eur.Phys.JC 42, 1 (2005);
H1 Coll., C.Adloff et al., Eur.Phys.JC 30, 32 (2003).

[5] G. Altarelli, G. Parisi, Nucl.Phys.B126, 298 (1977);
V.N. Gribov, L.N. Lipatov, Sov.J.Nucl.Phys15, 438 (1972);
L.N. Lipatov, Sov.J.Nucl.Phys20, 94 (1975);
Yu.L. Dokshitzer, JETP46, 641 (1977).

[6] R.S. Thorne and R.G. Roberts, Phys.RevD57, 6871 (1998).

[7] S. Eidelman, Phys.LettB 592, 1 (2004).

[8] A.M. Cooper-Sarkar, J.PhysG 28, 2669 (2002).

[9] ZEUS and H1 Collaborations, ZEUS-prel07, 036 (2007).

[10] S. Frixione and G. Ridolfi, Nucl.Phys.B507, 315 (1997).

[11] S. Catani and M.H. Seymour, Nucl.Phys.B510, 503 (1998).

[12] P. Aurenche et al, Z.Phys.C64, 521 (1994).

[13] C. Glasman., arxiv:hep-ex0709, 4426 (2007).

[14] C. Gwenlan,Dis summary, available on
http://chep.knu.ac.kr/lp07/htm/S2/S02-4.pdf. Talk atXXIIIth Int. Conf. on
Lepton Photon Physics (LP2007), Daegu, Korea, Aug 2007.

[15] ZEUS Collaboration, DESY06, 128 (2007).



[16] ZEUS Collaboration, DESY07, 092 (2007).

[17] H1 Collaboration, DESY07, 073 (2007).

[18] ZEUS Collaboration, ZEUS-prel07, 005 (2007).

[19] H1 Collaboration, H1-prel07, 131 (2007).

[20] C. D. White and R. S. Thorne, Phys. Rev.D75, 034005 (2007).

[21] G. Altarelli, R. D. Ball and S. Forte, Nucl. PhysB742, 1 (2006).

[22] M. Ciafaloni et al., Phys. LettB635, 320 (2006).

[23] E. Iancu, AIP. Conf. Proc.892, 43 (2007).

[24] A.M. Cooper-Sarkar, arxiv:hep-ph0709, 0191 (2007).

[25] ZEUS Collaboration, DESY07, 052 (2007).

[26] ZEUS Collaboration,Abstract 106. Europhysics. Conf. on High Energy Physics (EPS2007),
Manchester, UK, July 2007.

[27] ZEUS Collaboration,Abstract 107. Europhysics. Conf. on High Energy Physics (EPS2007),
Manchester, UK, July 2007.

[28] H1 Collaboration, H1-prel07, 171 (2007).

[29] ZEUS Collaboration,Abstract 108. Europhysics. Conf. on High Energy Physics (EPS2007),
Manchester, UK, July 2007.

[30] P. Thompson, J.Phys.G34, 177 (2007).

[31] Wu Ki Tung et al., arxiv:hep-ph0707, 0320 (2007).

[32] R.S. Thorne, Phys.RevD73, 054019 (2006).

[33] A.M. Cooper-Sarkar et al, Z.Phys.C39, 281 (1998).

[34] ZEUS Collaboration,Abstract 78. Europhysics. Conf. on High Energy Physics (EPS2007),
Manchester, UK, July 2007.

[35] H1 Collaboration, H1-prel07, 042 (2007).

[36] H1 Collaboration, H1-prel07, 144 (2007).


	Introduction
	Comparing ZEUS and H1 published PDF analyses
	Combining ZEUS and H1 HERA-I data
	Adding exclusive jet cross-section data to PDF fits, and measurements of s(Mz)
	Adding HERA-II data to PDF fits
	The future

