Physics with eP collisions at highest Q² and P_T

Juraj Braciník MPI for Physics Munich for H1 and ZEUS collaborations

- Introduction
- HERA collider and experiments
- Polarized NC/CC cross sections
- Combined QCD/EW analysis of the data
- Searches
- Conclusions and outlook

Juraj Braciník, Hadron Structure, Modra, September 2007

HERA collider at DESY

HERA:

Available data sets

H1 detector

Liquid Argon calorimeter

Neutral current scattering

Experimental signatures:

- Scattered electron and hadron jet(s)
- Transverse momentum balance

Charged current scattering

Experimental signatures:

- Hadron jet(s)
- Missing transverse momentum

Kinematics of ep interactions:

Four momentum transfer:

 e^{\pm}

Bjorken x: (in LO the fraction of the proton momentum carried by the parton)

 $Q^2 = -q^2 = -(k - k')^2$

$$x = \frac{Q^2}{2P.q}$$

Inelasticity: (in the proton rest frame the fraction of the electron energy loss)

$$y = \frac{P.q}{P.k}$$

At fixed center of mass energy only two of them are independent:

 $Q^2 = sxy$

Kinematic range of HERA

9

NC: parametrization of cross section

e(k') e(k) Described by γ or Z γ/Z°(Q² exchange (or their interference) : $Y_{\pm} = 1 \pm (1 - y)^2$ X p(P) $\frac{d^2 \sigma_{NC}^{e^{\pm} p}}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} \begin{bmatrix} Y_+ \tilde{F_2} \mp Y_- x \tilde{F_3} - y^2 \tilde{F_L} \end{bmatrix}$ In quark-parton model: $F_2 \sim x \sum e_q^2 [q+\overline{q}]$ dominant high Q² high y $xF_3 \sim x \sum e_q a_q [q-\overline{q}]$ contribution $F_L = 0$

CC: parametrization of cross section

Described exchange bosons:

$$Y_{\pm} = 1 \pm (1 - y)^2$$

Described by the
exchange of
$$W^{\pm}$$

bosons:
$$Y_{\pm} = 1 \pm (1 - y)^{2}$$
$$\frac{d^{2}\sigma_{CC}^{e^{\pm}p}}{dxdQ^{2}} = \frac{G_{F}^{2}}{4\pi x} \left[\frac{M_{W}^{2}}{M_{W}^{2} + Q^{2}} \right]^{2} \left[Y_{\pm}W_{2} \mp Y_{-}xW_{3} - y^{2}W_{L} \right]$$
$$In quark-parton model:$$
$$\sigma_{CC}^{+} \sim x[(\overline{u} + \overline{c}) + (1 - y)^{2}(d + s)]$$

е

 $\sigma^-_{CC} \sim x[(u+c)+(1-y)^2(\overline{d}+\overline{s})]$

NC/CC at high Q²

NC/CC cross sections are similar above Q^2 equal to W mass!

Longitudinal polarization at HERA

- Longitudinal polarization of lepton beam: new at HERA II.
 - The transverse polarization builds up naturally (Sokolov-Ternov effect)
 - Typical build-up time ~40 min
 - Spin rotators flip the polarization to longitudinal just before the interaction regions
 - Typical level of polarization 30 40 %

Level of polarization P is defined as:

$$P = \frac{N_R - N_L}{N_R + N_L}$$

 N_R, N_L - number of lh (rh) leptons in beam

Polarized CC cross section I.

Polarization affects CC cross section in particularly clean way:

• In SM only left handed particles (right handed antiparticles) interact via CC

$$\frac{d^2 \sigma_{CC}^{e^{\pm} p}}{dx dQ^2} = \left[1 \pm P\right] \frac{G_F^2}{4\pi x} \left[\frac{M_W^2}{M_W^2 + Q^2}\right]^2 \left[Y_+ W_2 \mp Y_- x W_3 - y^2 W_L\right]$$

Expect linear dependence of CC cross section on P!

Polarized CC cross section II.

Differential cross sections with different polarizations have the same shape, the normalization is different

Polarized CC cross section III.

- Data are in good agreement with SM prediction
- Fit by straight line

Extrapolation to $P_e = \pm 1 \rightarrow limits$ on RH σ_{cc}				
$\sigma_{cc}(e^{-}p)$ [pb] extrapolated to $P_e = +1$				
H1 (prel.)	$-0.9\pm2.9_{stat}\pm1.9_{syst}\pm2.9_{pol}$			
ZEUS (prel.)	0.8±3.1 _{stat} ±5.0 _{syst+pol}			
$\sigma_{cc}(e^{+}p)$ [pb] extrapolated to P _e = -1				
H1 (pub.)	-3.9±2.3 _{stat} ±0.7 _{syst} ±0.8 _{pol}			

Convert to 95% CL on heavy W_R boson (assuming $g_L = g_R$ and v_R is light):

- M_{WR} > 208 GeV (H1, e+p)
- M_{WR} > 186 GeV (H1, e-p)
- M_{WR} > 180 GeV (ZEUS, e-p)

Data are in good agreement with SM!

Polarized NC cross section I.

$$\frac{d^2 \sigma_{NC}^{e^{\pm} p}}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} [Y_+ \tilde{F}_2 \mp Y_- x \tilde{F}_3 - y^2 \tilde{F}_L]$$

Generalized structure functions depend on polarization:

$$x\tilde{F}_3 = -(a_e \pm P_e v_e)\chi_Z xF_3^{\gamma Z} + (2v_e a_e \pm P_e (v_e^2 + a_e^2))\chi_Z^2 xF_3^Z$$

 $x\tilde{F}_3 \sim -a_e \chi_Z x F_3^{\gamma Z}$ To first order does not depend on P, allows to measure unpolarized χF_3

$$\tilde{F}_2 = F_2 - (v_e \pm P_e a_e) \chi_Z F_2^{\gamma Z} + (v_e^2 + a_e^2 \pm 2P_e v_e a_e) \chi_Z^2 F_2^Z$$

 $\tilde{F}_2 \sim F_2 \pm \frac{P_e}{e} a_e \chi_Z F_2^{\gamma Z}$

To first order the same magnitude and opposite sign for two lepton beam charges $a_e = -0.5$ $v_e \approx -0.04$

Polarized NC cross section II.

plotting charge dependent polarisation asymmetry A:

$$A^{\pm} = \frac{2}{P_R - P_L} \cdot \frac{\sigma^{\pm}(P_R) - \sigma^{\pm}(P_L)}{\sigma^{\pm}(P_R) - \sigma^{\pm}(P_L)}$$

- asymmetries well described by SM predictions (using H1 and ZEUS pdf's)
- observation of parity violation at distances down to 10⁻¹⁸ m

xF_{3} from NC cross section I.

data corrected for (small) polarization effects, difference in e^+ p and e^- p cross sections gives xF_3^-

xF_{3} from NC cross section II.

measured xF_3 is used to extract

 γ -Z interference term:

- H1 and ZEUS data adjusted to common Q²=1500 GeV²
- take out kinematic terms
- common result obtained as weighted average of H1 and ZEUS result

direct measurement of valence quark distributions down to (rather) low x

The EW/QCD analysis of NC/CC data

Precise data sets allow combined EW+QCD analysis:

- Use several data sets (NC, CC, jets in p (ZEUS))
- Fit QCD parameters (pdf)
- EW parameters at the same time

Recent EW+QCD fits:

- H1 HERA I (Phys.Lett.B632(2006)35) (94-00)
- H1 HERA I+II (preliminary) (94-05)
- ZEUS HERA I+II (preliminary) (94-06)

CC is sensitive to M_{W} :

$$\frac{d^2 \sigma_{CC}^{e^{\pm} p}}{dx dQ^2} = \frac{G_F^2}{4\pi x} \left[\frac{M_W^2}{M_W^2 + Q^2} \right]^2 \left[Y_+ W_2 \mp Y_- x W_3 - y^2 W_L \right]$$

NC is sensitive to quark axial and vector couplings to Z:

$$\tilde{F}_{2} = F_{2} - (v_{e} \pm P_{e}a_{e})\chi_{Z}F_{2}^{\gamma Z}(\boldsymbol{a_{i}}, \boldsymbol{v_{i}}) + (v_{e}^{2} + a_{e}^{2} \pm 2P_{e}v_{e}a_{e})\chi_{Z}^{2}F_{2}^{Z}(\boldsymbol{a_{i}}, \boldsymbol{v_{i}})$$

The EW/QCD analysis: pdf's

more details in talk of A. Cooper-Sarkar!

Juraj Braciník, Hadron Structure, Modra, September 2007

The extraction of quark couplings to Z I.

- No sign ambiguity (interference terms)
- Sensitive both to v and a, different
 Q² dependence
- Polarization helps with v

In QPM:

$$egin{aligned} F_2^{\gamma Z} &= 2x \sum e_i v_i [q_i + \overline{q_i}] \ &\ F_2^Z &= x \sum (v_i^2 + a_i^2) [q_i + \overline{q_i}] \end{aligned}$$

$$xF_3^{\gamma Z} = 2x \sum e_i a_i [q_i - \overline{q_i}]$$

 $xF_3^Z = 2x \sum v_i a_i [q_i - \overline{q_i}]$

The extraction of quark couplings to Z II.

Fit results with either u or d quark couplings fixed to SM values:

for u quarks best available measurement!

EW/QCD analysis: Right handed isospin

Introduce right handed isospin, should be zero in SM:

-3

$$a_{q} = T_{q,L}^{3} + T_{q,R}^{3}$$
$$v_{q} = T_{q,L}^{3} - T_{q,R}^{3} - 2e_{q}sin^{2}\theta_{W}$$

__2

 $T_{q,L}^3, sin^2 \theta_W$ fixed to SM values

ZEUS ᠈᠊ᡛ ZEUS-pol-T³₄-T³₄-PDF (prel.) total uncert. uncorr. uncert. 0.5 * SM 0 -0.5 68% CL -0.5 0.5 -1 0

In agreement with SM

EW/QCD analysis: propagator mass

The mass of the propagator can be determined from the Q² dependence of the CC cross section:

Fit simultaneously G and M_{prop}:

Physics Beyond Standard Model: Introduction

HERA is one of energy frontier machines:

- energy (318 GeV) between LEP (up to about 200 GeV) and TEVATRON(up to about 2 TeV)
- "cleanliness" of ep also between ee and $p \overline{p}$

Two possible ways of searches:

- Look for deviations from the SM in tails of distributions
 - investigate all possible high P_{T} topologies
 - great generality, minimize probability to miss something
- Look for predicted signatures of BSM models
 - adapt an analysis for each exotic prediction
 - Larger sensitivity

BSM: Generic search I

General, model independent search for deviations from SM:

- find isolated high P_T particles: e, γ, μ, jet, ν,...
- common phase space:
 - $P_T > 20 \text{ GeV}$
 - $10^{\circ} < \theta < 140^{\circ}$
 - isolation: $\Delta \eta^2 + \Delta \phi^2 > 1$
- classify events into exclusive channels (>= 2 particles), for example e-jet, jet-jet, jet-v, ...

BSM: Generic search II

Look for deviations in spectra:

- find regions of spectrum with largest deviation from SM
- use many generated SM MC samples to determine what deviations we expect from statistical fluctuations

No very significant deviation found, most deviating channel is μ - ν -j in e+p data

BSM: Isolated leptons I.

Events (DIS or γp) with:

- high P_{T miss}
- isolated high $P_{_{T}}$ lepton (e or μ)
- hadronic final state $P_{_{\rm T}}^{~{\rm X}}$

BSM: Isolated leptons II.

H1 HERA I+II	e channel	μ channel	e and μ channels
$P_T^{X} > 25 \text{ GeV}$	obs. / exp. (signal)	obs. / exp. (signal)	obs. / exp. (signal)
e ⁺ p data (294 pb ⁻¹)	11 / 4.7 ± 0.9 (75%)	10 / 4.2 ± 0.7 (85%)	21 / 8.9 ± 1.5 (80%)
e⁻p data (184 pb⁻¹)	3 / 3.8 ± 0.6 (61%)	0 / 3.1 ± 0.5 (74%)	3 / 6.9 ± 1.0 (67%)

Excess of events at high P_{T}^{X} for e+p observed (~3 σ)

Juraj Braciník, Hadron Structure, Modra, September 2007

BSM: Isolated leptons III.

ZEUS in agreement with SM:

Combined (H1+ZEUS) analysis:

H1+ZEUS HERA I+II $P_T^X > 25$ GeV	e channel obs. / exp. (signal)	μ channel obs. / exp. (signal)	e and μ channels obs. / exp. (signal)
e ⁺ p data (0.58 fb ⁻¹)	12 / 7.4 ± 1.0 (70%)	11 / 7.2 ± 1.0 (85%)	23 / 14.6 ± 1.9 (81%)
e⁻p data (0.39 fb⁻¹)	4 / 6.0 ± 0.8 (67%)	2 / 4.8 ± 0.7 (87%)	6 / 10.6 ± 1.4 (76%)

For combined analysis excess drops (~2 σ)

Juraj Braciník, Hadron Structure, Modra, September 2007

BSM: Leptoquarks I.

Leptoquarks:

- bosons coupling to lepton-quark pairs
- naturally appear in various unifying theories BSM

- Low mass LQ: look for peak in M_{LQ} distribution
- confidence limits on M_{LQ} and Yukava coupling λ

BSM: Leptoquarks II.

- High mass LQ: search for deviation of cross section from SM at high Q² (contact term)
- determine limits on $M_{_{\rm LO}}^{}/\!\lambda$

35

BSM: Quark (and lepton) radius

Search for non-pointlike structure of quarks (leptons):

• at high Q² should modify SM cross section:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2} = \frac{\mathrm{d}\sigma^{\mathrm{SM}}}{\mathrm{d}Q^2} f_e^2(Q^2) f_q^2(Q^2)$$
where $f(Q^2) = 1 - \frac{\langle r^2 \rangle}{6} Q^2$

 no deviation from SM prediction seen, allows to set confidence limits:

$$r_q < 0.74 \cdot 10^{-18} \text{ m (H1)}$$

 $r_q < 0.67 \cdot 10^{-18} \text{ m (ZEUS)}$

Conclusions and Outlook

- HERA experiments collected large data sets with lepton polarization for both lepton beam charges
- Rich electroweak physics at high Q^2 and $P_{_{T}}$
- Measurement of EW parameters from combined EW+QCD fits
- competitive limits on BSM physics

more of precision results from full HERA I+II data set still to come!