QCD at HERA

V. Boudry Laboratoire Leprince-Ringuet, École polytechnique, Palaiseau, France

Introduction

- 15 years of ep scattering at high energy
- Main goal: study of proton structure
 - substructures ?
 higher 4-momentum transfert → smaller distance
 Q² ~ 10⁵ GeV² → 10⁻¹⁸ m (1/1000 of the size of the p)
 - understanding of confinement ?
 low x → screening
- 2 most striking results of HERA from QCD:
 - Strong rise of F₂ at low x
 - Size of diffractive contributions in DIS
- Entering precision measurements:
 - Parton distribution function in the proton
 - α_s
 - Diffraction models
- \rightarrow Many challenges for pQCD

HEP-MAD'07 - QCD @ HERA, V. boudry, Ecole polytechnique

Rem: No EW No BSM results here

A unique machine

- Only hybrid ep collider
- Start 1992
- Upgrade 2000-2002
 - improved beam focusing
 - longitudinal polarization
 → H1 & ZEUS
- end 1/7/2007 (-few mins)

Collected luminosity

- High Energy Running (√s=300-320 GeV)
 - 1992 → March20th,2007
 - 758 pb⁻¹ delivered by HERA
 - ~478 pb⁻¹ for H1 physics
 - ~504 pb⁻¹ for ZEUS physics
- Low Energy Running (E_p = 460 GeV, √s = 225 GeV)
 - 16 pb⁻¹ delivered
- Intermediate: (Ep = 575 GeV, √s = 252 GeV)
 - 8.4 pb⁻¹ delivered

DIS kinematics

- Q² = -q²
 γ virtuality
- $x = Q^2/2 P \cdot q$ fraction of momentum struck quark
- y = P·q/P·k = Q²/xs inelasticity (fraction of energy deposited in p rest frame)
- W = (q+p)²
 cms energy of the γp system
- 2 indep^t variables inclusive measurement

х

e (k')

MM

y (q)

e (k)

p (P)

Deep Inelastic Scattering

Kinematics domain

HEP-MAD'07 - QCD @ HERA, V. boudry, Ecole polytechnique

Proton Structure Functions

- F₂ dominates in most phase space (esp. pure em coupling)
- F_L contributes at high y
- $F_3 \sim \gamma Z$ interference \rightarrow High Q^2

SF evolution

x=0.021 Q=15 GeV 1,4 1,4 1,4 1,2 1,2

- In the Quark-Parton Model, → no Q² dependance with gluons (& sea quarks):
- More partons @ High Q²
 - $\rightarrow \log Q^2$ scaling violation
- → The opacity of the proton increases @ low x

HEP-MAD'07 — QCD @ HERA, V. boudry, Ecole polytechnique

Factorization:

- In the Quark-Parton Model: pdf f_a(x, Q²) = a(x) = probability to find a parton "a" with a fraction x for the proton, at a scale Q² a = q, q (u, d, s, ...), g
 - For the pure e.m. part: $F_2(x) = x \sum e_q^2(q(x) + \overline{q}(x))$
- With QCD:

universal, scale dependent Q² evolution by DGLAP eqs. process dependent coeff. pQCD in power series of $\alpha_s(Q^2)$

00000

$$F_{i}(x,Q^{2}) = \sum_{a=q,\bar{q},g} f_{a}(x,Q^{2}) \otimes C_{i}^{a}(x,Q^{2})$$

HEP-MAD'07 - QCD @ HERA, V. boudry, Ecole polytechnique

+ . . .

Determination of PDF at HERA

Procedure:

- Parametrization of a(x) at starting scale Q²₀: valence q, sea q, g with all the constraints (sum rules)
- Evolution of $a(x) \rightarrow f_a(x, Q^2)$ using NL DGLAP equations
- Convolution with pQCD predicted coefficients $\rightarrow \sigma$
- Fit to data (⊃ all systematics)

$$F_{2} = x \sum e_{q}^{2}(q(x) + \bar{q}(x))$$

$$xF_{3} = x \sum 2e_{q}a_{q}(q(x) - \bar{q}(x))$$

$$\sigma_{e+p}^{CC} \sim x(\bar{u} + \bar{c}) + x(1 - y)^{2}(d + s)$$

$$\sigma_{e-p}^{CC} \sim x(u + c) + x(1 - y)^{2}(\bar{d} + \bar{s})$$

Analyses:

- low Q^2 inclusive $NC \rightarrow low x$ sea and g (indirect from scaling)
- High Q^2 NC & CC inclusive DIS \rightarrow valence quarks density
- Jets production data \rightarrow g at mid x

PDF from NLO Fits

- From F2 data (H1 & ZEUS)
 - HERA-I data
 - well described by fits
 - 1.5–3% precision
- ⊃ fixed target (ZEUS)
- CC data
 - for valence quark at high x
- Good agreement
- low x dominated by gluons
- LHC ~ gg collider
- expects much improved precision from
- HERA-II data (e⁺p × 3, e⁻p × 10)
 - \rightarrow 1 2% precision
- Combined DIS cross-sections

ZEUS-Jets Fits

- HERA-I data
- Simultaneous pdf's + α_s
- DIS NC data + jets
 - inclusive jets in DIS
 - dijets in photoproduction
 - ~2× precision on gluons at mid x (0.01 < x < 0.2)
- xU=x(u+c); xD=x(d+s)

DESY-05-050; EPJ C42 (2005) 1-16 HEP-MAD'07 — QCD @ HERA, V. boudry, Ecole polytecnnique

Combined DIS cross-section (H1 & ZEUS)

- From HERA-I (1996-2000) published data
- Q² > 1.5 GeV²
- Coherent approach of syst. error correlation
- Constraint due to X-calibration
 - → Precision gain > pure stat. : ×2 (not √2)
- First step to more combinations
 - inclusion of HERA-II
 - pdf, QCD fits, ...

HERA Structure Functions Working Group

Combined xF₃

- First combined SF Combination of H1+ZEUS DIS NC cross-sections
- $xF_3 \propto \sigma(e-p) \sigma(e+p) \propto 2u_v + d_v$

 \rightarrow measure of valence quarks

- 200 < Q² < 30000 GeV²
- *L* = 478.8 pb⁻¹ (HERA-I H1+ZEUS)
- Good agreement with pdf
 - esp. no increase at low x (sea q contributions ~0)

High y

- 2003-2006 data (e[±]p data)
 - *L* = 96 pb⁻¹
- $12 \text{ GeV}^2 < Q^2 < 150 \text{ GeV}^2$
- 0.75<y<0.9
- High Sensitivity to F
 - → constrains on DGLAP F₁ ~ xg

2× precision wrt previous data

 \rightarrow prepares for low E F₁ determination

low x, low Q² measurement

- High precision from special run in 99/00
 - shifted vertex \rightarrow lower θ_{e}
 - minimum bias trigger
- 0.2 < Q² < 12 GeV²
- 4·10⁻⁶ < x < 0.02</p>
 - \supset data with y<0.85
 - → sensitivity to F_L
- 2-3% precision
- Extended kin. domain (lower Q², larger x) by use of radiative correction
 - \rightarrow transition to the soft QCD
 - empirical predication: fractal fits, power laws

low Q² measurements

- At lowQ2,
 - F2 ~ $\sigma_T + \sigma_L$
 - $F_L \sim \sigma_L$
- New preliminary measurement of $\sigma_{eff.} = \sigma_{T} + [1 y^2/(1 + (1 y)^2)]\sigma_{L}$
- Fill the gap to photoproduction

Measures of $\alpha_s(M_z)$

- Many methods:
 - Scaling violations $\left(\frac{\partial F_2}{\partial \ln Q^2}\right) \propto \alpha_s \left[P \otimes g + P \otimes F_2\right]$
 - exclusive states (jets crosssections, jet properties)
 - combined values to NLO
- All in good agreement
 - Dominated by th. errors

 $\alpha_s(M_z) = 0.1186 \pm 0.0011 \text{ (exp)} \pm 0.005(\text{th}) \text{ (H1 + ZEUS)}$ $\rightarrow \alpha_s(M_z) = 0.1189 \pm 0.0010 \text{ (world average, Bethke 2006)}$

α from Inclusive jets X-sections in NC DIS

e (k')

y (q)

e (k)

p (P)

e[k]

P(P)

- High E_{τ} jets
 - \rightarrow low experimental uncertainty
 - \rightarrow calc. in pQCD
- In the Breit frame (γ -p cms):
 - suppr. direct DIS (Born process)
 - suppr. of p remnants
- longitudinally inv. k_{τ} jet algorithm
 - IR safe,
 - parton / hadron equi.
- Inclusive jets (≠ di-jets)
 - reduced th. uncertainties
 - IR safe
- NLO calc
 - \rightarrow low theoretical uncertainty

HEP NOR OF PCO CISE PC VS boudry, Ecole polytechnique

Leading Order: QCD Compton Boson-Gluon Fusion e (k') e (k) **y**, Z{q} Z y, Z [q] ā P(P)

Jets inclusive in NC DIS (ZEUS)

- Agreement for different jet Radius R
- E_t^{jet} = running scale for α_s

HERA 2007 combined α_s

 α_s

Running of $\alpha_s \dots$

... from HERA data alone

High E_T jets in photoproduction (Q²~0)

HEP-MAD'07 — QCD @ HERA, V. boudry, Ecole polytechnique N. Slominski, H. Abramowicz and A. Levy, Eur. Phys. J. C 45, 633 (2006).

BFKL vs DGLAP

• DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) is expected to break down at low x and Q² region

- BFKL (Balitsky-Fadin-Kuraev-Lipatov) can be applicable at low x
- CCFM (Ciafaloni-Catani-Fiorani-Marchesini) describes an evolution in both Q² and x and approches BFKL at low x and DGLAP at high Q²; angular ordering

First hints of a breakdown of DGLAP

3 jets dynamic at low x and low Q²

 fwd in the direction of the proton → unordered k_T gluons emission ?
 fwd jet = θ_{jet}<20° and x_{jet} = E*_{jet}/E_P>0.035 typically BKFL in γ*p cms

Diffraction re-discovery

- re-discovery by ZEUS in 93: 1/10 of DIS events present a large rapidity gap
- $ep \rightarrow eXp$, \rightarrow p barely touched

10

HEP

1% of long. momentum exchanged P_T ~ 100 MeV.

\rightarrow Regge theory ("Vaccum exchange")

n=1.1

 $\ln M_x^2 / GeV^2$

n = -0.75

Regge Factorization

 $\gamma^* (\mathbf{Q}^2)$ **QCD** collinear factorisation at fixed x_{ID}, t X (M_x) (X_{IP}) р р (t) e mis Proton vertex factorisation IP.IR w ment, ... oouary, noble polytechnique

DIS: $F_2(x, Q^2) = \sum f_a \otimes C_2^a$ $a = q, \overline{q}, g$ **Diffractive DIS:** $F_{2}^{D(3)}(x_{IP}, \beta, Q^{2}) = \sum f_{a}^{D} \otimes C_{i}^{a}$ if Regge factorization holds: $f_a^D(x_{IP}, \beta, Q^2) = \operatorname{Flux}(x_{IP}) f_a^{IP}(\beta, Q^2)$ t = squared 4-mom. transfer to proton $x_{ID}(or \xi) = fractional proton mom. loss$ (mom. frac. IP/p) β (or z_{IP}) = fraction of total exchanged mom. entering hard scatter (mom. frac. q / IP or g / IP)

Hard Diffraction: PDF's

• If factorisation holds : Hard Diff \rightarrow IP PDF's

Diffractive PDF's (inclusive +2jets)

- Consistent picture
- Improved precision on gluon density
- Spoiled by rescattering in photoproduction HEP-MAD'07 — QCD @ HERA, V. boudry, Ecole polytechnique

0.8

0.6

0.4

 $Q^2 = 25 \text{ GeV}^2$

0.05 0.025

0

0.2

VM production

• Vector Mesons: (γ) , ρ^0 , ω , Φ , J/Ψ , Υ

γ* fluctuate in VM + hadronic scattering

Y*

VM production

- Vector Mesons: (γ) , ρ^0 , ω , Φ , J/Ψ , Υ
 - γ* fluctuate in VM + hadronic scattering

VM production vs hard scale

- Study at moderate Q²
- σ ~ W^δ

 $\delta = \delta_0 + 0.25 \ln(Q^2 + M^2)$

dσ/dt ~ e^{bt} at low |t| b = b_v + b_p
b_v ~ 1/(Q² + M²) qqbar pair size

VM test of QCD dynamics

- $ep \rightarrow ep \rho^0 @ high |t| (H1)$
- spin analysis
- BFKL model
 - vs 2 gluons
 - vs Regge Model (helicity conservation)

Conclusions & Outlook

- Many "unmissable" topics uncovered
 - DVCS, Heavy Quarks, many many analysis...
- Huge progress on p structure function precision
 - extended precision in all of the kin.
 - \rightarrow low & high x, low & high Q², high y
- ... and in the QCD basis of diffraction
- Still a lot of work
 - combine H1 & ZEUS data started
 - HERA-II data "barely" touched
 → improvement of precision × ~2 expected
- and many new results to come,
 - direct measurements of $F_{L} \sim \alpha_s xg(x)$ from low energy runs
 - inclusion of charm and beauty data (F2cc and F2bb) in QCD fit
 - NNLO QCD fits