#### Isola d'Elba, HCP 2007

May 24th, 2007





Juan Terrón (Universidad Autónoma de Madrid, Spain)





# **Performance of HERA collider and ZEUS and H1 experiments**



High Energy Running (√s = 300 - 320 GeV)
→ ended on March 20th, 2007
→ luminosity delivered by HERA: 758 pb<sup>-1</sup>
→ H1 physics luminosity : ~ 478 pb<sup>-1</sup>
→ ZEUS physics luminosity : ~ 504 pb<sup>-1</sup>
Low Energy Running (E<sub>p</sub> = 460 GeV, √s = 225 GeV)
→ ongoing, more than 10 pb<sup>-1</sup> by now
→ measurement of F<sub>L</sub>
⇒ End of HERA: July 2nd, 2007

#### • Outline

- $\rightarrow$  Jet production in neutral current deep inelastic scattering at high  $Q^2$
- $\rightarrow$  Jet production at low x
- $\rightarrow$  Improving the gluon density in the proton by using jet data

#### **Kinematics of Neutral Current Deep Inelastic Scattering**



# **Neutral Current Deep Inelastic Scattering**

# • Neutral Current DIS event candidate $Q^2 \sim 24000~{ m GeV}^2$ and $x_{Bj} \sim 0.5$

• Coverage of kinematic plane  $(Q^2, x_{Bj})$ 



**One of the legacies of HERA** 





J Terrón (Madrid)

Isola d'Elba, HCP 2007

May 24th, 2007

#### **Universality (and usefulness) of Proton PDFs**

$$\sigma_{pp \to H(W,Z,...)+X} = \sum_{a,b} \int_0^1 dx_1 \ f_{a/p}(x_1,\mu_F^2) \int_0^1 dx_2 \ f_{b/p}(x_2,\mu_F^2) \ \hat{\sigma}_{ab \to H(W,Z,...)}$$



J Terrón (Madrid)

Isola d'Elba, HCP 2007

## Jet Production in Neutral Current Deep Inelastic Scattering



• Perturbative QCD calculations of jet cross sections:

$$d\sigma_{jet} = \sum_{a=q,ar{q},g}\int dx \ f_a(x,\mu_F^2) \ d\hat{\sigma}_a(x,lpha_s(\mu_R),\mu_R^2,\mu_F^2)$$

- $-f_a$ : parton *a* density in the proton, determined from experiment; long-distance structure of the target
- $-\hat{\sigma}_a$ : subprocess cross section, calculable in pQCD; short-distance structure of the interaction

# Jet Production in Neutral Current Deep Inelastic Scattering

- In the region where the wealth of data from fixed-target and collider experiments has allowed an accurate determination of the proton PDFs, measurements of jet production in NC DIS provide
  - $\rightarrow$  a sensitive test of the pQCD predictions of the short-distance structure
  - $\rightarrow$  a determination of the strong coupling constant  $\alpha_s$
- To perform a stringent test of the pQCD predictions and a precise determination of  $\alpha_s$ :
  - \* Observables for which the predictions are directly proportional to  $lpha_s$ 
    - $\rightarrow$  Jet cross sections in the Breit frame
  - \* Small experimental uncertainties  $\rightarrow$  Jets with relatively high transverse energy
  - \* Small theoretical uncertainties  $\rightarrow$  NLO QCD calculations
  - $\rightarrow$  Jet algorithm: longitudinally invariant  $k_T$  cluster algorithm (Catani et al)
  - (small parton-to-hadron effects, infrared safe, suppression of beam-remnant jet)
  - $\rightarrow$  Jet selection criteria
- Exploration of the parton evolution at low  $x \Rightarrow$  footprints of BFKL effects?

#### **QCD** at HERA

# **High-** $E_T$ Jet Production in the Breit Frame



- In the Breit frame the virtual boson collides head-on with the proton
- High- $E_T$  jet production in the Breit frame
  - $\rightarrow$  suppression of the Born contribution (struck quark has zero  $E_T$ )
  - $\rightarrow$  suppression of the beam-remnant jet (zero  $E_T$ )
  - $\rightarrow$  lowest-order non-trivial contributions from  $\gamma^*g \rightarrow q\bar{q}$  and  $\gamma^*q \rightarrow qg$
  - $\Rightarrow$  directly sensitive to hard QCD processes ( $\alpha_s$ )

New measurement  $\Box$ he kinematic region defined by  $Q^2 > \Box_{AU} = \Box$   $|\cos \gamma| < 0.65$  for jets with  $E_{T,jet}^B > 8$  GeV and  $\Box_B^B < 1.5$  using  $\mathcal{L} = 81.7$  pb<sup>-1</sup>  $\Box_B^{U} = 0.65$  for jets with  $E_{T,jet}^B > 8$  GeV and  $\Box_{DU} = 0.000$ • New measurement of inclusive jet cross sections in 10 R=0.7 (x 1)  $\rightarrow$  for different values of the radius-like parameter 1 (R) of the  $k_T$ -cluster algorithm: R = 0.5, 0.7, 1  $\stackrel{\scriptstyle{\smile}}{\overleftarrow{2}}$  10  $^{-1}$ • Advantages: 10  $\rightarrow$  infrared insensitivity (no dijet cuts!) 10  $\rightarrow$  smaller theoretical uncertainties than for dijet 10 • Small experimental uncertainties: 10  $\rightarrow$  jet energy scale (1% for  $E_{T,jet} > 10$  GeV) 10  $\Rightarrow \sim \pm 5\%$  on the cross sections  $10^{\overline{2}}$ • Small parton-to-hadron corrections  $(C_{had}): < 10\%$ 





• New measurement of inclusive jet cross sections in the kinematic region defined by  $Q^2 > 125 \text{ GeV}^2$  and  $|\cos \gamma| < 0.65$  for jets with  $E_{T,jet}^B > 8$  GeV and 0.4 •<mark>•</mark> 0.2  $-2 < \eta^B_{iet} < 1.5$  using  $\mathcal{L} = 81.7~\mathrm{pb}^{-1}$  $(data/NLO \otimes hadr \otimes$  $\rightarrow$  for different values of the radius-like parameter -0.2 -0.4 (R) of the  $k_T$ -cluster algorithm: R = 0.5, 0.7, 10.4 0.2 • Advantages: -0.2  $\rightarrow$  infrared insensitivity (no dijet cuts!) -0.4  $\rightarrow$  smaller theoretical uncertainties than for dijet 0.4 0.2 • Small experimental uncertainties:  $\rightarrow$  jet energy scale (1% for  $E_{T,jet} > 10$  GeV) -0.2 -0.4  $\Rightarrow \sim \pm 5\%$  on the cross sections • Small parton-to-hadron corrections  $(C_{had}): < 10\%$ 





• New measurement of the inclusive jet cross section  $d\sigma/dE_{T,jet}^B$  in the kinematic region defined by  $Q^2 > 125 \text{ GeV}^2$  and  $|\cos \gamma| < 0.65$ for jets with  $E_{T,jet}^B > 8 \text{ GeV}$ and  $-2 < \eta_{jet}^B < 1.5$ 

- Small theoretical uncertainties (R = 1):
  - → higher-order terms (> NLO); varying  $\mu_R$ between  $\frac{1}{2} \cdot E^B_{T,jet}$  and  $2 \cdot E^B_{T,jet} \Rightarrow \pm 5\%$
  - $\rightarrow$  uncertainties on the proton PDFs;  $\Rightarrow \pm 3\%$
  - $\rightarrow$  uncertainty on  $\alpha_s(M_Z)$  (±0.0010);  $\Rightarrow \pm 2\%$
  - $\rightarrow$  hadronisation corrections;  $\Rightarrow \pm 1.4\%$





• New measurement of the inclusive jet cross section  $d\sigma/dE_{T,jet}^B$  in the kinematic region defined by  $Q^2 > 125 \text{ GeV}^2$  and  $|\cos \gamma| < 0.65$ for jets with  $E_{T,jet}^B > 8 \text{ GeV}$ and  $-2 < \eta_{jet}^B < 1.5$ 

- Small theoretical uncertainties (R = 1):
  - → higher-order terms (> NLO); varying  $\mu_R$ between  $\frac{1}{2} \cdot E^B_{T,jet}$  and  $2 \cdot E^B_{T,jet} \Rightarrow \pm 5\%$
  - $\rightarrow$  uncertainties on the proton PDFs;  $\Rightarrow \pm 3\%$
  - $\rightarrow$  uncertainty on  $\alpha_s(M_Z)$  (±0.0010);  $\Rightarrow \pm 2\%$
  - $\rightarrow$  hadronisation corrections;  $\Rightarrow \pm 1.4\%$





- New measurement of the double differential cross-section  $d^2\sigma/dE_T dQ^2$  for jets with  $7 < E_{T,jet}^B < 50$  GeV,  $-1 < \eta_{jet}^{lab} < 2.5$ in the kinematic region defined by  $150 < Q^2 < 15000$  GeV<sup>2</sup>, 0.2 < y < 0.7using  $\mathcal{L} = 65$  pb<sup>-1</sup>
- Small experimental uncertainties:  $\sim 5\%$ , hadronic energy scale and model dependence
- The  $E_T$  spectrum gets harder with increasing  $Q^2$
- Good description of the data by NLO QCD (corrected for hadronisation effects,  $\mathcal{O}(10\%)$ ) using  $\mu_R = E_{T,jet}^B$ ,  $\mu_F = Q$  and the CTEQ6.5 parametrisations of the proton PDFs

#### **Inclusive Jet Cross Section**



# Inclusive Jet Cross Sections and extraction of $\alpha_s$ (ZEUS)



- $lpha_s(M_Z) = 0.1207 \pm 0.0014 \; {
  m (stat.)} \ +0.0035 \ -0.0033} \; {
  m (exp.)} ^{+0.0022}_{-0.0023} \; {
  m (th.)}$
- Experimental uncertainties: 2% from jet energy scale
- Theoretical uncertainties:
- ightarrow terms beyond NLO  $\Delta lpha_s(M_Z) = 1.5\%$
- ightarrow uncertainties proton PDFs  $\Delta lpha_s(M_Z)=0.7\%$
- ightarrow hadronisation corrections  $\Delta lpha_s(M_Z)=0.8\%$
- ullet Consistent with other determinations of  $\alpha_s$
- Very precise determination of  $\alpha_s(M_Z)!$



- Study of the scale dependence of  $\alpha_s(E^B_{T,jet})$ : from the measured  $d\sigma/dE^B_{T,jet}$  in each  $E^B_{T,jet}$  region  $\rightarrow \alpha_s(\langle E^B_{T,jet} \rangle)$  is extracted
- The measurements are consistent with the running of  $\alpha_s$  predicted by perturbative QCD

# **Inclusive Jet Cross Sections and extraction of** $\alpha_s$ (H1)



• Reduction of experimental and PDF 10 100 μ**, / GeV** μ**, / GeV** uncertainties by using "normalised" inclusive jet cross sections ( $\sigma_{jets} / \sigma_{NCDIS}$ ):

 $\alpha_s(M_Z) = 0.1193 \pm 0.0014 \text{ (exp.)}^{+0.0046}_{-0.0032} \text{ (th.)} \pm 0.0016 \text{ (pdf.)}$ 

- $\Rightarrow$  precise determination of  $\alpha_s(M_Z)$ ; consistent with the world average
- $\rightarrow$  theoretical uncertainty dominant (major contributions from  $\mu_{R,F}$  variations)



റ്റ 2

0.20

0.15

<sub>0.10</sub>– H1 (prel.)

a)

b)

100

 $\alpha_{s}(\mu = Q)$ 

averaged  $\alpha_{s}(\mu)$ 

•  $\alpha_{s}(\mu = M_{z})$  from PDG



**Searching for BFKL-induced effects** 

• DGLAP equations sum the leading powers of  $\alpha_s \log Q^2$ in the region of strongly-ordered transverse momenta  $Q^2 \gg k_{T_n}^2 \gg \ldots \gg k_{T_2}^2 \gg k_{T_1}^2$ • When  $\log Q^2 \ll \log 1/x$  terms proportional to  $lpha_s \log 1/x$  become important and need to be summed the BFKL equation accomplishes that; the integration is taken over the full  $k_T$  phase space of the gluons  $\Rightarrow$  no  $k_T$  ordering • Mueller and Navelet's proposal: forward (proton's direction) jet production with  $x_1/x$  as large as possible and  $k_{T1} \sim Q$ 

#### Measurement of Forward Jet Production at low x



#### Measurement of Forward Jet Production at low x



- LO QCD ( $\mathcal{O}(\alpha_s)$ ): hardly any phase space available for forward jet production
- NLO QCD (O(α<sup>2</sup><sub>s</sub>)): huge increase in cross section (NLO ≫ LO) due to opening of new channel (gluon exchange in t-channel)
   → NLO QCD becomes an "effective" LO, with large theoretical uncertainties



## Measurements of Three-jet Production at low x



• Measurements of three-jet production using the  $k_T$  cluster algorithm in the  $\gamma^* p$  frame with  $E^*_{\perp,jet} > 4 \text{ GeV}, E^*_{\perp,jet1} + E^*_{\perp,jet2} > 9 \text{ GeV}, -1 < \eta^{lab}_{jet} < 2.5$ (one central jet  $-1 < \eta^{lab}_{jet} < 1.3$ ) in the kinematic region defined by 0.1 < y < 0.7and  $4 < Q^2 < 80 \text{ GeV}^2 \Rightarrow$  The inclusion of yet another radiated gluon ( $\mathcal{O}(\alpha^3_s)$ )) improves dramatically the description of the data at low x

# Measurements of Three-jet Production at low x



 $\Rightarrow$  The inclusion of yet another radiated gluon ( $\mathcal{O}(\alpha_s^3)$ )

improves dramatically the description of the data at low  $\boldsymbol{x}$ 

## Measurements of Three-jet Production at low x



The inclusion of O(α<sup>3</sup><sub>s</sub>) corrections provides an improved description of the data

 → particularly dramatic for the sample with two forward jets (sample most sensitive to additional gluon radiation) → good description of the topology of three-jet events
 ⇒ Success of perturbative QCD O(α<sup>3</sup><sub>s</sub>) at describing multijet production at low-x

ightarrow almost ... still the data above NLO at  $x \sim 10^{-4}$  for "1 central +2 forward jets" sample



- Fixed-target DIS: higher twists, heavy-target corrections and isospin-symm. assumptions
- That's the past! NOW there are measurements of jet cross sections at HERA
- $\Rightarrow$  <u>directly sensitive</u> to the <u>gluon density</u> with <u>small</u> experimental+theoretical uncertainties!
- Sufficient sensitivity to determine the proton PDFs within a single (ep) experiment



### **Determination of PDFs using structure function and jet data from ZEUS**



#### **Determination of PDFs using structure function and jet data from ZEUS**

- Data sets used in the fit (577 data points):  $\rightarrow$  Structure function measurements: reduced double differential cross sections in x and  $Q^2$ 
  - ullet neutral current DIS  $e^+p$  and  $e^-p$
  - ullet charged current DIS  $e^+p$  and  $e^-p$
- $\rightarrow$  Jet cross section measurements:
  - inclusive jet production in NC DIS
  - $\bullet$  dijet production in  $\gamma p$  collisions
- Evolution of the PDFs with the energy scale: DGLAP equations at NLO ( $\overline{MS}$  scheme); 11 free parameters ( $+\alpha_s$  when free)
- Full account of correlated experimental uncertainties using the offset method
- A good description of the data is obtained:  $\chi^2 = 470$  for 577 data points



# ZEUS

Isola d'Elba, HCP 2007

Χ

# Improving the gluon distribution: jet data

- Comparison of gluon distributions from fits with and without jet data
- → no significant change of the shape: no tension between jet and inclusive data
- $\rightarrow$  the jet cross sections constrain the gluon density in the range 0.01 - 0.4

→ Sizeable reduction of the gluon uncertainty

e.g. from 17% to 10% at 
$$x=0.06$$
 and  $Q^2=7~{
m GeV}^{2^{-0.4}_{-0.6}}$ 

ightarrow similar reduction by a factor of two in the mid-x region over the full  $Q^2$  range



#### Summary of $\alpha_s$ determinations

th. uncert. **NLO OCD fit** exp. uncert. H1 (Eur Phys J C 21 (2001) 33) **NLO OCD fit** . . . . . . . . **ZEUS** (Eur Phys J C 42 (2005) 1) **NLO OCD fit** ·---ZEUS (Phys Rev D 67 (2003) 012007) Jet shapes in NC DIS ..... **ZEUS** (Nucl Phys B 700 (2004) 3) Subjet multiplicity in CC DIS **ZEŮS (Eur Phys Jour C 31 (2003) 149)** Subjet multiplicity in NC DIS ..... ZEŮS (Phys Lett B 558 (2003) 41) **Inclusive jet cross sections in**  $\gamma p$ **ZEUS (Phys Lett B 560 (2003) 7) Multi-iets in NC DIS** H1 prel. (contributed paper to EPS05) **Multi-iets in NC DIS ⊢\_\_\_+••+**-**ZEUS** (Eur Phys J C 44 (2005) 183) Norm. Incl. jet cross sections in NC DIS .**H**... H1 preliminary (DIS07) **Inclusive jet cross sections in NC DIS** H1 (Eur Phys J C 19 (2001) 289) Inclusive jet cross sections in NC DIS **ZEUS (DÉSY-06-241) Inclusive jet cross sections in NC DIS** ZEUS (Phys Lett B 547 (2002) 164) **Dijet cross sections in NC DIS ZĚUS (Phys Lett B 507 (2001) 70) HERA** average . . **H** (hep-ex/0506035)World average (S. Bethke, hep-ex/0407021) 0.1 0.12 0.14  $\alpha_{\rm s}({\rm M}_{\rm Z})$ 

- Wealth of determinations of  $\alpha_s$  at HERA from a variety of observables:
- $\rightarrow$  NLO QCD analyses of structure functions
  - $\rightarrow$  Inclusive jet production in NC DIS
  - $\rightarrow$  Dijet production in NC DIS
  - $\rightarrow$  Tri-jet/Dijet rate in NC DIS
    - $\rightarrow$  Jet substructure in NC DIS
    - $\rightarrow$  Jet substructure in CC DIS
      - $\rightarrow$  Inclusive jet photoproduction
- Theoretical uncertainties are dominant
  - $\rightarrow$  Biggest contrib. from terms beyond NLO

#### • Average of HERA determinations

 $\alpha_s(M_Z) = 0.1186 \pm 0.0011(\text{exp.}) \pm 0.0050(\text{th.})$ 

(most recent ones not yet included)

# The running of $\alpha_s$ from HERA data alone



ightarrow Consistent with the running predicted by QCD over a large range in  $E_T^{
m jet}$ 



- HERA I + II have provided  $\sim 0.5~{\rm fb^{-1}}$  of physics luminosity per experiment
  - $\rightarrow$  jet analyses with full luminosity just started
  - $\Rightarrow$  improvements expected on  $\alpha_s$  and proton and photon structure