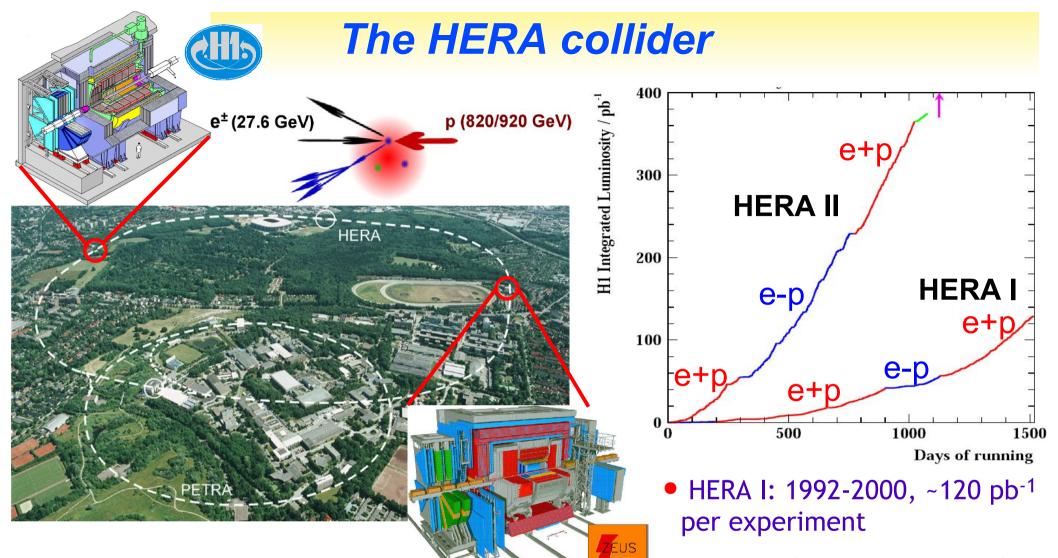
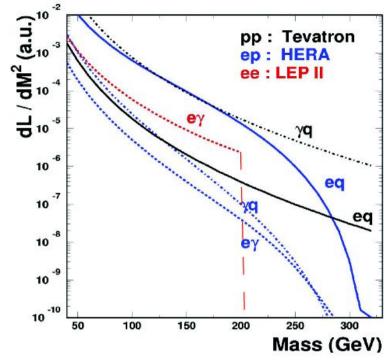

Searches for New Physics at HERA



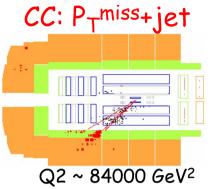
Emmanuel Sauvan CPPM Marseille

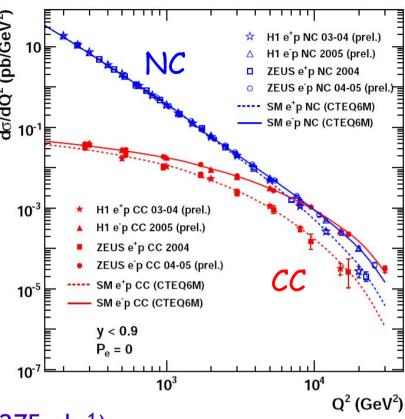
On behalf of H1 and ZEUS Collaborations


- HERA II: luminosity upgrade and polarised lepton beams
- \rightarrow End of E_{cm} = 320 GeV run: March, 20 2007
- \rightarrow ~360 pb⁻¹ per experiment in $e+_{L,R} p$ and $e-_{L,R} p$
 - ▶ In total H1+ZEUS together accumulated ~ 1fb-1

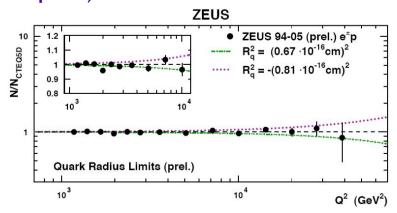
Hunting for New Physics at HERA

- ▶ The instrument: HERA is a frontier collider
 - \rightarrow \mathscr{L} ~ 0.5 fb⁻¹: search for processes with σ < 1 pb
 - Parton luminosity: HERA collides beyond LEP
 - Cross-section: depends on the underlying physics
 - Backgrounds: HERA has less than Tevatron



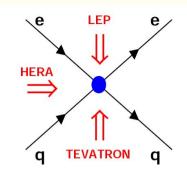

- Look for predicted signatures
 - → Single production of particles (depends on the coupling to SM)
 - → Non-observation: set limits
- Model independent searches
 - → SM processes with a low cross-section
 - → Investigate all possible final states, compare to SM

NC and CC DIS at highest Q²



HERA II

- Measurement of NC, CC DIS cross section at highest Q²
 - → Contains already a lot of informations
 - → New currents affecting DIS processes?
- NC DIS: Effective charge quark radius (ZEUS, 275 pb⁻¹)
 - → Assigns a finite size to EW charge distributions


$$\frac{d\sigma}{dQ^2} = \frac{d\sigma^{SM}}{dQ^2} \left(1 - \frac{R_q^2}{6} Q^2 \right)$$

№ Rq < 0.67 10⁻¹⁸ m

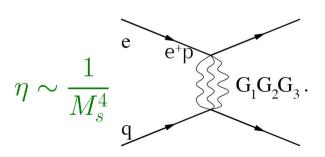
New Physics in eq → eq amplitude

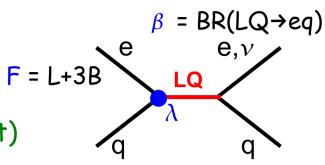
- General contact interactions: If the scale Λ of NP is large:
 - → Effect of NP parametrised as a 4-fermions interaction

$$\mathcal{L}_{CI} = \sum_{i,j=L,R} \eta_{i,j}^{e,q} \left(\bar{e}_i \gamma^{\mu} e_i \right) \left(\bar{q}_i \gamma_{\mu} q_i \right) \quad \eta_{i,j}^{e,q} = \epsilon_{i,j}^{e,q} \frac{4\pi}{\Lambda^2}$$

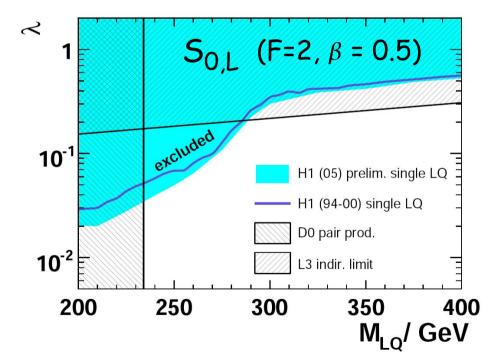

$$\eta_{i,j}^{e,q} = \epsilon_{i,j}^{e,q} \, \frac{4\pi}{\Lambda^2}$$

- → Modification of NC cross-section at high Q²
- ZEUS analysis, 1994-2005 data (275 pb⁻¹)

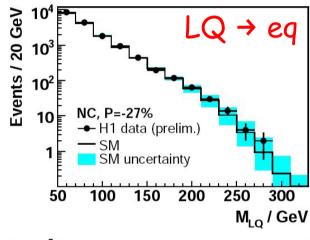


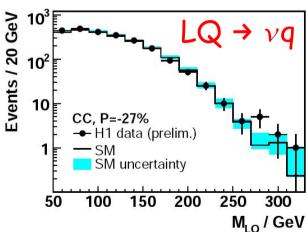


 \searrow Limits on Λ : 2 to 7.5 TeV



Lepto-quarks

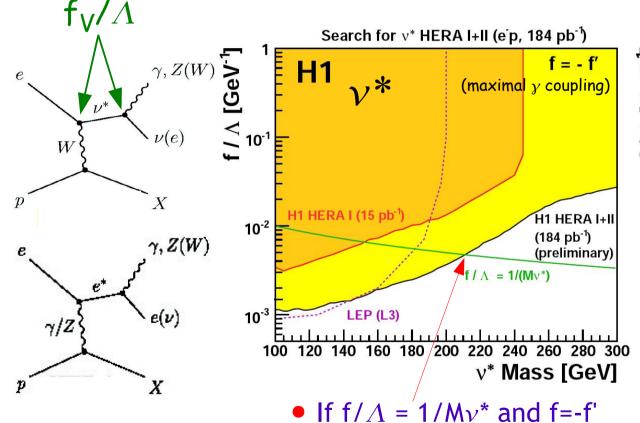

- Leptoquarks: connect lepton and quark sectors
 - → Appear in many extension of the SM
 - \searrow Look for Lepton-quark resonnances (e+jet, ν +jet)

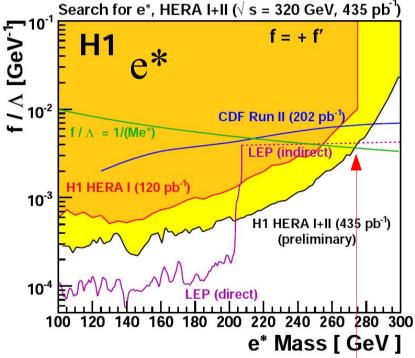


- H1 analysis, HERA II e-p (92 pb⁻¹)
 - → No excess observed neither in NC nor in CC

Compositness: Excited leptons

Compositness scale Λ

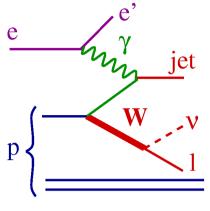

Relative strengh γ , Z, g:


f,f',fs

Excited fermions: direct signature of new scale of matter

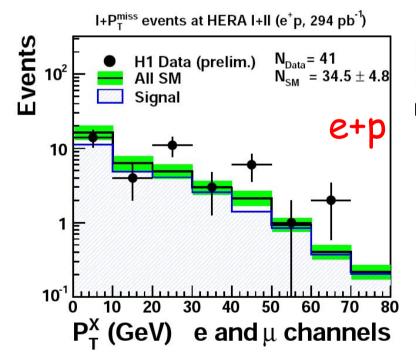
▲ Lepton-boson resonances?

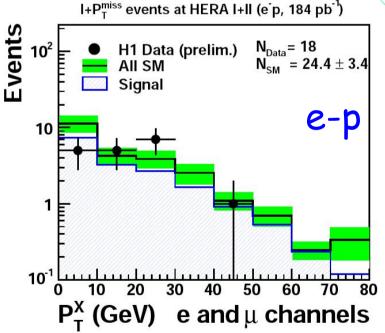
• H1: analysis of all HERA I+II data at \sqrt{s} = 320 GeV (435 pb⁻¹)



• If $f/\Lambda = 1/Me^*$ and f=+f' $Me^* < 273$ GeV excluded

A new territory explored at high mass


 Mv^* < 211 GeV excluded


W production at HERA (W \rightarrow e, μ)

SM W: $\sigma \sim 1.3 \text{ pb}$

- Events with high $P_T e_{,\mu}$, P_T^{miss} and hadronic system (P_T^X)
 - → HERA I, for $P_T^X > 25$ GeV an excess of data events (3 σ)
- All H1 HERA I+II data: 478 pb⁻¹
 - → Events at high P_T^X also observed in latest data

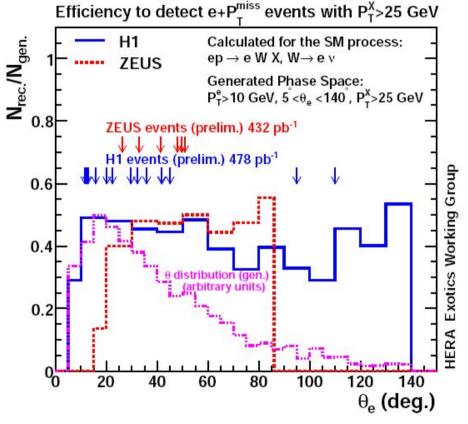
▶ Different observations in e+p and e-p

P_Tmiss

Hadronic

Isolated

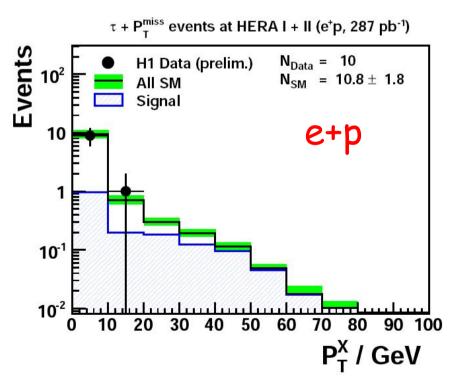
muon μ

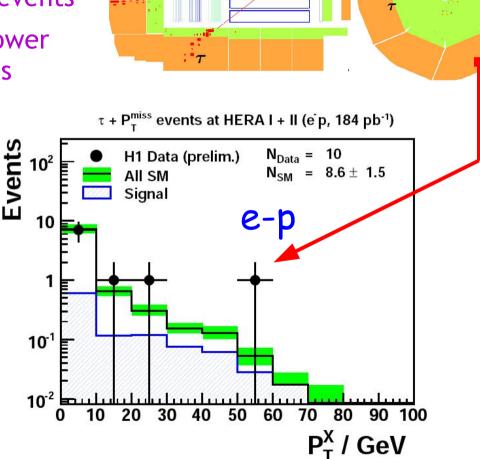

system χ

H1+ZEUS results for $P_T^X > 25$ GeV

- Analysis also performed by ZEUS, HERA I+II data: 432 pb⁻¹
 - → A good agreement with the SM is observed

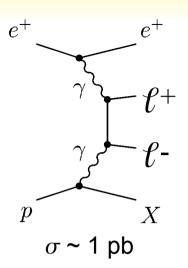
	P _T X >	25 GeV	electrons data / SM	muons data / SM
О Т	H1	294 pb^{-1}	$11 \ / \ 4.7 \pm 0.9$	$10 / 4.2 \pm 0.7$
ET	ZEUS	228 pb^{-1}	$11 / 4.7 \pm 0.9$ $1 / 3.2 \pm 0.4$	$3 / 3.1 \pm 0.5$
0-	H1	$184 \; { m pb}^{-1}$	$3 / 3.8 \pm 0.6$	$0 / 3.1 \pm 0.5$
6	ZEUS	204 pb^{-1}	$5/3.8 \pm 0.6$	$2 / 2.2 \pm 0.3$

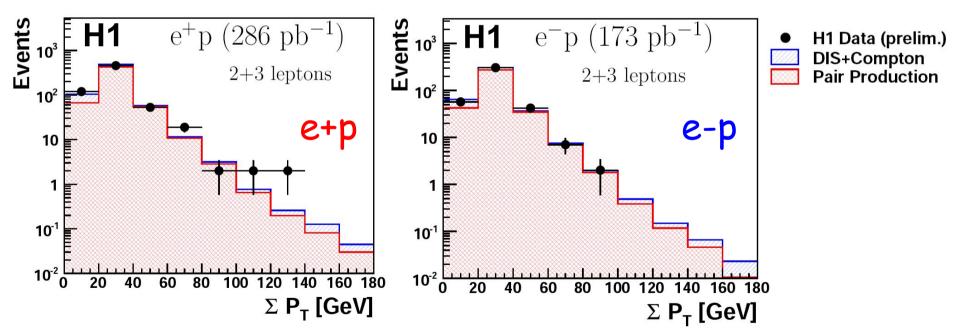

- In e+p H1: 21 / 8.9 \pm 1.5 (3 σ) ZEUS: agreement with the SM
- In e-p agreement with SM for both H1 and ZEUS



- Smaller acceptance for ZEUS, but -> Most H1 events are in it
 - ightharpoonup H1 excess remains in e+p data at 3σ level
 - Not clarified with HERA II data

Isolated $\tau + P_T^{miss}$ events


- ▶ To complement isolated electron and muon channels
- H1 analysis, full HERA I+II (471 pb⁻¹)
- τ identified in the hadronic 1-prong decay
 - → Jets with a single track in CC events
 - \rightarrow Large CC background, much lower efficiency than e or μ channels



No excess detected e+p or e-p

Multi-lepton events (e, μ)

- ▶ If anomalous W production, what about Z?
- Look for events with at least 2 isolated high- P_T leptons (e, μ)
 - → ee, eee, eμ, μμ, eμμ
- Mainly produced via γ - γ in SM
- H1 analysis performed on all HERA I+II data (459 pb⁻¹)
 - $\rightarrow \Sigma P_T$: hardness of the events

- \rightarrow Striking events observed for $\Sigma P_T > 100 \text{ GeV}$
- → In e+p only: 4 / 1.2 ± 0.2

Multi-electron events: H1/ZEUS

• ZEUS: analysis performed for multi-electron topologies (446 pb⁻¹)

- Phase space similar to H1
- But weaker background rejection at high mass in ee
 - For $M_{12} > 100 \text{ GeV}$

			Signal B	Background				
	data	SM	Pair prod.	DIS+QEDC				
H1								
ee	3	1.5 ± 0.3	0.9 ± 0.2	0.6 ± 0.2				
eee	3	0.9 ± 0.2	0.9 ± 0.2					
ZEUS								
ee	5	4.3 ± 1.1	1.1 ± 0.2 1.1 ± 0.1	3.2 ± 1.1				
eee	1	1.1 ± 0.1	1.1 ± 0.1	< 0.5				
	-			-				

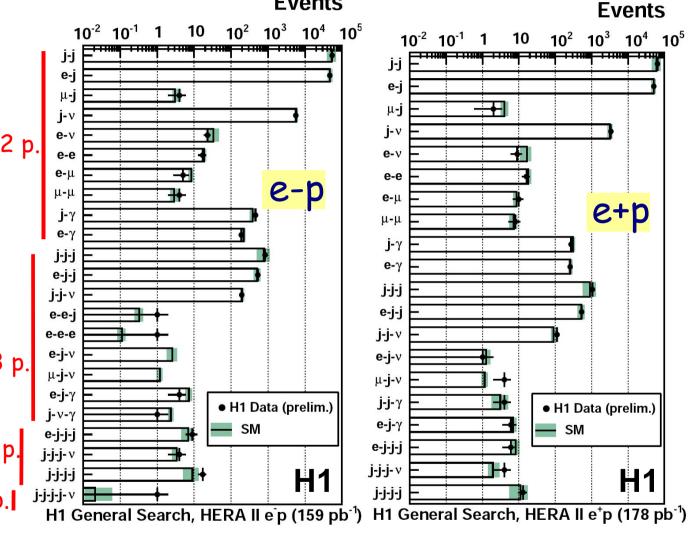
- → H1: no new ee(e) event, HERA I excess not confirmed
- → ZEUS: good agreement with SM thought background(QEDC) dominated in ee

A General Search

 \searrow A signature based search: investigate all high P_T topolgies

• H1, full HERA II data (337 pb⁻¹)

HERA I data published (117 pb⁻¹) [PLB 602(2004)14]

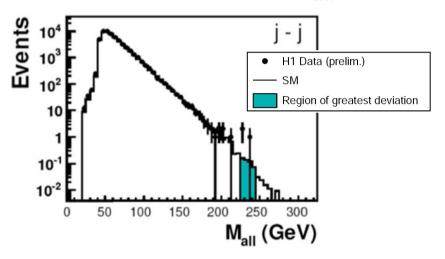

Isolated particles

 \rightarrow e, γ , μ , jet, ν

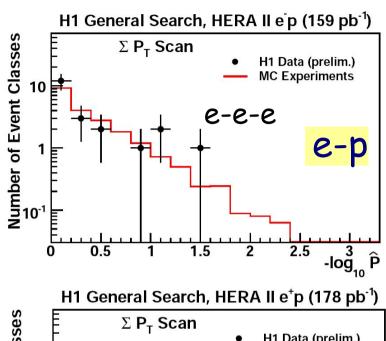
A common phase space

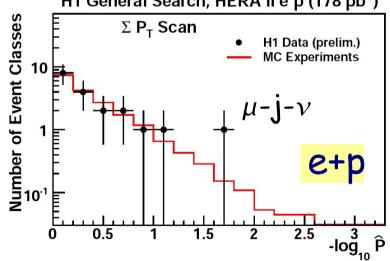
→ P_Tpart > 20 GeV

→ 10 < θ part < 140 deg.



→ Good agreement with SM in most classes


▶ Good understanding of the detector and of SM processes


General Search: statistical analysis

- Identify regions of largest deviations data / SM
 - \rightarrow Investigate 1D ΣP_T and M_{all} distributions

- Statistical analysis to quantify the significance of deviations (P)
 - → Most significant deviation at HERA II: μ -j- ν in e+p
 - → Was also the case in HERA I data ($-\log_{10} \hat{P} \sim 3$)
 - Corresponds to the topology of isolated leptons events

Summary

- High energy running of HERA ended on March, 20 2007
 - → In total: ~1 fb⁻¹ collected by H1 and ZEUS together
- Searches for new physics are ongoing
 - → A large number of results already exploits the full data sample
 - → No evidence for new physics is found
 - → Good complementarity of HERA data with LEP and Tevatron colliders

- A 3σ excess remains in H1 e+p data for isolated leptons
 - → The puzzle is not solved by HERA II data ...
 - ▶ Enter now in the era of final analyses