Electroweak results from ep collisions at HERA

Kunihiro Nagano (KEK, Japan)

On behalf of the H1 and ZEUS collaborations

Hadron Collider Physics Symposium 2007 (HCP07) 20-26 May 2007, Isola d'Elba, Italy

EW (a) DIS ?

• Remember: Weak neutral current was "DIScovered" by the Gargamelle

• ν -DIS has been a good test bench for the weak mixing angle, $\sin \theta_w$: nowadays as well "NuTeV anomaly"

NuTeV

2002

10

PDG2004

Q (GeV)

 $\sin^2 \theta_w^{\text{eff}}(\mathbf{Q})$ running

HERA : world only ep collider

Q² large

Q² corresponds to: the scale (wavelength) to probe the proton $\lambda \sim 1/\sqrt{Q^2}$ the scale of the elementary interaction between e and quark

$$Q_{MAX}^2 = s$$
 At HERA: Ee=27.5 GeV, Ep=920 GeV $Q_{MAX}^2 \sim 10^5 \, GeV^2$
 $\sqrt{s} = 320 \, \text{GeV}$ $\lambda_{MAX} \sim 1/1000 \, r_{max}$

ν -DIS: Weak @ Q² ≤ O(100) GeV²
HERA: Electro-Weak @ Q² ≈ EW scale

 $\lambda_{MAX} \sim 1/1000 r_{proton}$ (corresponds to ~50 TeV incident beam on fixed target)

Colliders at EW scale

 $EW \otimes QCD$

A "SM" study!

Probe proton structure by t-channel exchange of gauge bosons $\sigma(ep) \propto \sum \sigma(eq) \otimes (pdf)$

- -- At low Q²: mainly by γ
- -- At high Q²: γ /Z (NC) and W (CC)
- Investigate electron-quark elementary processes based on knowledge of proton structure (at low Q^2)

HERA Kinematics

- **1 Q**² two orders higher. Look for quark structure.
- **(2)** Bjorken scaling variable x, two orders smaller.

5

 $x = Q^2 / 2pq$: Mom. Fraction of the struck quark

HERA legacy on proton structure

High-Q² at HERA: and LHC

-- DGLAP evolution of proton structure. -- Based on these knowledge, study elementary processes (EW) at large energy scale

Low Q² region : -- Precise measurement of proton structure

This is exactly what we're about to do: HERA \rightarrow LHC (Remind: gluons/sea at $x=10^{-4} \sim 10^{-2}$ are determined by HERA)

HERA Running

- ► HERA-I : Until year 2000
 - Unpolarized e⁺ and e⁻ beams

► HERA-II : since year 2002 until Mar/2007

High luminosity to allow more statistical sensitivity for large Q²
Longitudinally polarized e+ and e-

beams to allow direct sensitivity to EW

Transverse Pol due to
Sokolov-Termnov effects
Change transverse pol.
to longitudinal pol.

Low Energy Run : Mar – 2/July/2007
 A special run with low proton beam energy (460 GeV) to measure "F_L" structure function

1 fb⁻¹ collected by H1+ZEUS

End of ~15 years of HERA project

The years 2007-2008 will be a turning point; HERA final results will be brought while LHC will be starting up

I. DIS @ EW scale

- Quark radius
- EW unification

Quark radius

Probing proton with highest spatial resolution

- Quark radius: if there is structure in the quark, DIS cross section at high Q^2 will be modified due to spatial distribution of quark charge:

$$\frac{d\sigma}{dQ^{2}} = \frac{d\sigma^{SM}}{dQ^{2}} (1 - \frac{R_{q}^{2}}{6}Q^{2})^{2}$$

(like "form factor" with Rq corresponding to the average radius of quark charge)

EW unification

We are just about to achieve another layer of unification

HERA ep collider

 Unification of electromagnetic and weak forces

 \Rightarrow electroweak theory

Long-term goal since
 '60s

• We are getting there!

• The main missing link: Higgs boson

H.Murayama @ KEK TC 2007

NC and CC cross sections become similar at EW scale
 "EW unification" (Differences remained are mainly due to PDFs)

II. DIS (a) EW scale with polarization

• First polarized DIS @ EW scale

-- Right-handed CC

-- Parity violation in weak NC

EW with polarized lepton beams

• Polarization = Asymmetry of Helicity states:

$$\mathbf{P} = (\mathbf{N}_{\mathrm{R}} - \mathbf{N}_{\mathrm{L}}) / (\mathbf{N}_{\mathrm{R}} + \mathbf{N}_{\mathrm{L}})$$

- Helicity = Chirality (if mass is neglected)
- \rightarrow By means of Pol, chiral structure can be tested.

Charged-current DIS

• "Pure" Weak

 \rightarrow Chiral structure of weak int. is directly

visible as a function of Polarization

• Weak = "100% parity violated" (no RH)

→ Zero cross section @ Pol=1 (-1 for e^+)

→
$$\sigma$$
(Pol) = (1±Pol) σ (Unpol)

Neutral-current DIS

Weak's parity violating effect through *γ*-Z interference and pure Z
 → visible only at large Q²

• Such γ -Z and Z terms contain EW parameters,

i.e. quark couplings to Z, $\sin \theta_{\rm W}$, M_Z

CC cross section vs. polarization

HERA-II Data

- Consistent with SM prediction of: σ (RH CC)=0 (Error band from PDF uncertainty)
- Direct sensitivity to $W_R \rightarrow$ Next Slide

NC cross section vs. polarization

HERA-II

Data

• $d\sigma/dQ^2$: Polarization effects as a function of Q^2

Parity violation of weak NC observed for the first time at EW scale

III. QCD+EW combined analysis

• Mw

• Light quark couplings to Z

EW+QCD fit

• A fit to single experimental data

- -- H1 fit to H1 data only, ZEUS fit to ZEUS data only
- -- Advantage: Handling of systematic errors is straightforward Free from target-mass correction in fixed-target data
- A fit to determine both PDF and EW parameters
 -- Advantage: correlation automatically taken into account

Determination of M_W

ZEUS: $M_W = 82.8 \pm 1.5 (stat + uncor.syst) \pm 1.3 (cor.syst) GeV$

M_W in the framework of SM

• In the SM G_F and M_W are related \rightarrow Fits fully assuming SM

-- On-Mass-Shell (OMS) scheme

Light quark couplings to Z

$$\frac{d^{2}\sigma_{e^{\pm}p}}{dxdQ^{2}} = \frac{2\pi\alpha^{2}}{xQ^{4}} \Big[\Big\{ 1 + (1-\gamma)^{2} \Big\} F_{2} \mp \Big\{ 1 - (1-\gamma)^{2} \Big\} x F_{3} \Big]$$

$$\begin{split} \tilde{F}_2 &= F_2^{\gamma} - (v_e \pm P_e a_e) \chi_Z F_2^{\gamma Z} + ((v_e^2 + a_e^2) \pm P_e 2 v_e a_e)) \chi_Z^2 F_2^Z \\ \tilde{F}_3 &= - (a_e \pm P_e v_e) \chi_Z F_3^{\gamma Z} + ((2v_e a_e \pm P_e (v_e^2 + a_e^2)) \chi_Z^2 F_3^Z \end{split}$$

Unpol: $\sigma(e^+) - \sigma(e^-) \rightarrow F_3^{\gamma Z}$ Pol: $\sigma(P_e \rightarrow) - \sigma(P_e \leftarrow) \rightarrow F_2^{\gamma Z}$ $\downarrow \downarrow$ Unpol: $\sigma(e^+) - \sigma(e^-) \rightarrow a_f$ Pol: $\sigma(P_e \rightarrow) - \sigma(P_e \leftarrow) \rightarrow v_f$ • EW structure functions in QPM

$$egin{array}{rcl} F_2^{\gamma Z}&=&2e_fm{v}_f\Sigma_ix[q_f+\overline{q_f}]\ F_2^Z&=&(m{v}_f^2+m{a}_f^2)\Sigma_ix[q_f+\overline{q_f}]\ F_3^{\gamma Z}&=&2e_fm{a}_f\Sigma_ix[q_f-\overline{q_f}]\ F_3^Z&=&2e_fm{a}_f\Sigma_ix[q_f-\overline{q_f}]\ F_3^Z&=&2m{v}_fm{a}_f\Sigma_ix[q_f-\overline{q_f}] \end{array}$$

V/A couplings extraction [constrained]

• Note: Pink contour is a fit using HERA-I \rightarrow Cleary shows HERA-II sensitivity to vector couplings

22

Un-(minimum) constrained fit

► All four (V_u, A_u, V_d, A_d) free fit

• A EW+QCD fit to determine: T_{u}^{3} , T_{d}^{3} , $\sin^{2} \theta_{W}$

In the SM

$$v_f = T^3{}_f - 2e_f \sin^2 \theta_W$$
$$a_f = T^3{}_f$$

 $T^{3}{}_{u} = 0.47 \pm 0.05 \pm 0.13$ $T^{3}{}_{d} = -0.55 \pm 0.18 \pm 0.35$ $\sin^{2} \theta_{w} = 0.231 \pm 0.024 \pm 0.070$

Nb: In this fit, $\sin^2 \theta_w$ also contributes to the propagator term

Summary

• HERA has provided most precise inclusive structure function measurements, which brought significant improvements to our knowledge on proton structure

• Based on this precise understanding of the proton structure, HERA is now able to investigate elementary interactions with high luminosity and longitudinal polarization provided since 2003

- --- First polarized DIS @ EW scale
- --- Direct sensitivity to right-handed CC
- --- First observation of parity violation in weak NC @ EW scale
- --- Best determination of light quarks NC couplings

• HERA ended its high energy run on 21/Mar/2007: 1 fb-1 by H1 and ZEUS --- HERA legacy in EW sector will come soon.

Determination of SM EW parameters

• V_u, V_d, A_u, A_d, parameterization as less model dependence as possible

