Beauty Production at HERA using the H1 Experiment

Paul Thompson

University of Birmingham

- Motivation
- Experimental Techniques
- Beauty dijets in photoproduction
- Inclusive beauty cross section in DIS

Test of perturbative QCD: multi-scale problem (Q^2 , m_b^2 , p_t^2)

Theoretical approaches: massless, massive(FFNS) and general mass(GM-VFNS) flavour number schemes.

PDFs: F_2^{bb} measurements at high Q^2 important for LHC e.g. bb->H LO (α_s)+Parton shower: DGLAP (PYTHIA/RAPGAP), CCFM (CASCADE) NLO (α_s^2) calculations: Fixed order (FMNR/HVQDIS), GM-VFNS PDFs

Experimental Techniques

P^{ref}t

Displaced tracks

Measure impact parameter back to primary vertex. Higher efficiency than explicit secondary vertex.

Focus on results using this method

H1 Vertex Detector

Central Silicon Tracker

- Double layer double sided strips
- •Precise determination of impact parameter in transverse plane
- •Resolution of $|\delta|$ for hits in both layers;

Signed impact parameter $\boldsymbol{\delta}$

 $\alpha < 90^{\circ} \longrightarrow \delta = +|\delta|$

Displaced Track Method

Signed Impact parameter $\boldsymbol{\delta}$

Significance

Charm and beauty asymmetric due to lifetime

Light flavours mostly symmetric

Significance =
$$\delta / \sigma (\delta)$$

Signal Extraction

Define two significance distributions

S₁ significance of highest significance track (1 track events)

S₂ significance of second highest significance track (> 1 track events)

Subtract -'ve from +'ve bins to reduce resolution uncertainty

Fit S₁, S₂ and total number of events with MC templates for *c*, *b*, *uds*

Beauty Dijets in Photoproduction

H1 Final, Eur. Phys. J. C47 (hep-ex/0605016)

 $Q^2 < 1 \text{ GeV}^2$, 0.15<y<0.8, $p_t^{jet} > 11(8) \text{ GeV}$, -0.9< $\eta^{jet} < 1.3$

Highest p_t region measured for beauty jets at HERA Data above, but consistent with, QCD models (MC, NLO QCD) NLO QCD = massive scheme (FMNR)

Dijets and x_{γ}

 x_{γ} = fraction of γ 's momentum entering hard interaction Shape best described by PYTHIA with resolved γ contribution CASCADE/NLO QCD low at small x_{γ} $p_{f}^{jet_{1}}$ for $x_{\gamma} > 0.85$ better described by NLO

Dijet Quark Fractions

Cross section fraction $f_b = \sigma_b / \sigma_{udscb}$

b fraction higher for large x_{γ} (direct processes)

Approaching expectation of massless limit (quark charge counting)

Inclusive b cross section in DIS

H1 data (HERA-I) obtained using displaced track method.

 $p_t^{track} > 0.5 \ GeV \ reduces$ extrapolations to full cross section and allows to measure inclusive $\sigma_{bb} \sim F_2^{\ bb}$

Region $Q^2 <= m_b^2$ challenging $f^{bb} = 10^{-3}$. Need S₁, S₂ and S₃.

Data described by QCD

GM-VFNS CTEQ6.5, MRST04, MRST NNLO FFNS CTEQ5F4

Eur. Phys. J. C40 (2005) 349 (hep-ex/0411046) Eur. Phys. J. C45 (2006) 23 (hep-ex/0507081) e^+p data 1999-2000, $L_{int} = 57.4 \text{ pb}^{-1}$

Inclusive b cross section in DIS

Conclusions

• Beauty cross sections measured using number of techniques at H1

- Provide a stringent test of perturbative QCD
- Data so far well described by pQCD (NLO, NNLO)
- Forthcoming HERA-II data (~3 more than HERA-I) will help further to constrain heavy flavour PDFs and reduce uncertainties for future colliders e.g. LHC