Experimental tests of QCD

- Proton structure
- **α**5
- The real secrets of QCD:
 - Diffraction
 - Underlying event
 - Fragmentation
- Nucleon spin

July 23, 2007 @HEP2007, Manchester Olaf Behnke (Heidelberg)

HERA proton PDF --> LHC W production

'Lumi' process for LHC

Prediction using ZEUS-S-PDF

→ HERA u, d and gluon determine precision - how far can we improve this?

Valence quarks: xF₃

The final word from HERA for low $Q^2 < 10 \text{ GeV}^2$

Warning: Signs of Breakdown of DGLAP at small x

Can probe the 'most violent' gluons!

Gluon from jets at Tevatron

Deviation from NLO QCD could also signal new physics !

CDF Run II Preliminary CDF Run II Preliminary K_∓ D=0.7 Ratio to CTEQ6.1M K_T D=0.7 1.6<|y^{JET}|<2.1 Data $= 1.0 \, \text{fb}^{-1}$ — Data Systematic uncertainties NLQ: JETRAD CTEQ6.1M 2.5 Systematic uncertainties corrected to hadron level PDF uncertainties $\mu_{\rm p} = \mu_{\rm F} = \max p_{\rm T}^{\rm JET} / 2 = \mu_{\rm p}$ $\mu = 2 \times \mu_0 = \max p_T^{JET}$ PDF uncertainties MRST2004 [′]|<0.1 (× 10°) 1.5 → Data can 0.1<|y^{JET}|<0.7 (× 10³) constrain q(x)at high x 0.7<|y^{JET}|<1.1 0.5 $1.1 < |y^{\text{JET}}| < 1.6 (\times 10^{9})$ 10⁻¹¹ 600 300 400 500 700 200 100 p_T^JET [GeV/c] Similar results 1.6<|y^{JET}|<2.1 (× 10⁻⁶) **10⁻¹⁴** from DO Hadronic energy scale dominates 200 300 400 500 600 700 0 100 experimental uncertainty p_T^JET [GeV/c]

HERA beauty density ... goes to LHC

Probe b PDF with Z+jet at Tevatron

Diffraction: Intro

 Hadron-Hadron scattering dominated by soft elastic processes, called diffraction
 Question: partonic nature of this exchange?

Hard diffraction at HERA - a key to the partonic nature

Does QCD factorisation hold? σ = Diffr. PDF $\otimes \sigma_{hard matrix el.}$

Elastic Vector meson production at HERA

Vector meson production: t-slope vs Q²

Transverse extension of hard gluons in proton is ~0.6 fm, smaller than proton radius 0.8 fm!

Underlying event

need to understand & correct underlying event

Underlying event: Z + jet at Tevatron

Nucleon Spin structure

Contributions from gluon? $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_z$

HERMES:

 $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + I$

results for transverse polarised target: Non-zero Sivers amplitudes for π -> L_z^q <>0
 DVCS target spin asymmetry: Ju+Jd/2.9 ~0.42

 \rightarrow Much more precise DVCS results to be expected from last HERA data periods

Summary

> HERA:

- 30.6.2007 end of a unique machine for DIS at the high energy frontier, successor?
- Many new results at HEP2007, improved precisions 'challenge' QCD at new level!
- Refine calibrations to achieve final results with full HERA statistics:
- Proton content: gluon density (very important for LHC), charm & beauty
- ✓ High precision α_{s_i}
- Diffraction (e.g. gain more insight on factorisation breaking)

Heavy flavour production at HERA and Tevatron covered in talk by A. S. Navarro

Tevatron:

- Accumulating (happily!) more lumi than ever
- Unique QCD lab, complementary to HERA:
- Proton content: access to the gluon density at highest x
- Reveal complicate structure of hadron hadron collisions: Underlying event, multiple interactions

HERMES, COMPASS, RHIC: hunting the 'contributors' to the nuclear spin
Nicely improving knowledge - but puzzle still not settled: gluons or orbital angular momentum?

Thanks to: H. Abramowicz,, C. Diaconu, D. Hasch, R. Lefevre, A. Levy and all speakers in the QCD session

HERA Gluondensity --> LHC

QCD fit prospects

Study by C. Gwenlan, A. Cooper-Sakar, C. Targett-Adams, HERA-LHC proceedings

Assumptions:

- → 700 pb⁻¹ Lumi at HERA II ≈ reached by combining H1+ZEUS
- Inclusive data: Only high Q²>100 GeV² taken into account
- Only statistical improvements, no systematical

CTEQ global PDF fits: Effect of proper charm mass treatment in CTEQ6.5M

CTEQ6.1M: charm mass neglected in the kinematics of the processes

