Elektroschwache Physik bei HERA und Tevatron und die Suche nach dem Higgs Boson

A.Schöning

ETH Zürich, Switzerland

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

DPG Jahrestreffen in Heidelberg, 5.-9. März 2007

Überblick

- Einleitung
 - Standard Modell + Elektroschwache Physik
- HERA II
 - Neutrale + Geladene Strom, Polarisation
 - Kombinierte Elektroschwache+QCD Fits
- Tevatron Run II
 - ✤ W und Top Masse
 - Di-Boson Produktion
 - ✤ Higgs Suchen
- Zusammenfassung/Ausblick

Das Standard Modell (SM) der Teilchenphysik

Leptons spin = 1/2			
Flavor	Mass GeV/c ²	Electric charge	
ve electron neutrino	<1×10 ⁻⁸	0	
e electron	0.000511	-1	
v_{μ} muon neutrino	< 0.0002	0	
μ muon	0.106	-1	
$ u_{\tau} ext{ tau } $ neutrino	<0.02	0	
au tau	1.7771	-1	

Unified Electroweak spin = 1			
Name Mass Electr GeV/c ² charg			
γ photon	0	0	
w-	80.4	-1	
W+	80.4	+1	
Z ⁰	91.187	0	

	6		Theory un	certainty	
	5-		$\Delta \alpha_{had}^{(5)} =$	0.00035	-
	- 4 -		•••• 0.02749±	0.00012 Q ² data	-
$\Delta \chi^2$	3-				-
	2-				
	1-				2 72
	0	Excluded		Preli	minary
	3	0	100)	300
			m _H [Ge	eV]	

Quar	ks spin	= 1/2
Flavor	Approx. Mass GeV/c ²	Electric charge
U up	0.003	2/3
d down	0.006	-1/3
C charm	1.3	2/3
5 strange	0.1	-1/3
t top	175	2/3
b bottom	4.3	-1/3

Strong	(color) spi	n = 1
Name	Mass GeV/c ²	Electric charge
g gluon	0	0

Das Standard Modell (SM) der Teilchenphysik

Leptons spin = 1/2				
Flavor	Mass GeV/c ²	Electric charge		
ve electron neutrino	<1×10 ⁻⁸	0		
e electron	0.000511	-1		
v_{μ} muon neutrino	< 0.0002	0		
μ muon	0.106	-1		
$v_{ au} ext{ tau } neutrino$	<0.02	0		
au tau	1.7771	-1		

T111.1 "Neutrinophysik" Tobias Lachenmeyer

Unified Ele	ectroweak	spin = 1
Name	Mass GeV/c ²	Electric charge
γ photon	0	0
w-	80.4	-1
W+	80.4	+1
Z ⁰	91.187	0

T111.2 "Elektroschwache Physik"

	- 5 - 4 -	Δα ⁽⁵⁾ 	ncertainty 3±0.00035 - 9±0.00012 - 4 Q ² data -
$\nabla \chi^{-}$	3-		
	1-		
	0_ 3	Excluded 0 10	Preliminary 0 300
		m _H [G	ieV]

Quarks spin = 1/2			
Flavor	Approx. Mass GeV/c ²	Electric charge	
U up	0.003	2/3	
d down	0.006	-1/3	
C charm	1.3	2/3	
5 strange	0.1	-1/3	
t top	175	2/3	
b bottom	4.3	-1/3	

Strong	(color) spi	n = 1
Name	Mass GeV/c ²	Electric charge
g gluon	0	0

T111.2 "The Quest of solving QCD" Karl Jansen

T113.1 "Heavy Flavour Physik" Stefanie Menzemer

T113.2 "CP-Verletzung+Quark Mischung" Heiko Lacker

T114.1 "QCD Prazisionsmessungen" Thomas Gehrmann

T114.1 "Proton Struktur und low x" Victor Lendermann

André Schöning, ETH Zürich

4

DPG Jahrestreffen, Heidelberg, 5.-9. März 2007

$$g_{A_f} \stackrel{\text{def}}{=} T_3^f \qquad (=a_f)$$

$$g_{V_f} \stackrel{\text{def}}{=} T_3^f - 2\sin^2\Theta_W e_f \quad (=v_f)$$

 g_{A_f} , g_{V_f}

$$g_{A_f} \stackrel{\text{def}}{=} T_3^f \qquad (=a_f)$$
$$g_{V_f} \stackrel{\text{def}}{=} T_3^f - 2\sin^2\Theta_W e_f \quad (=v_f)$$

 g_{A_f} , g_{V_f}

 $Z \xrightarrow{f}_{m_{z}} f -i \frac{e}{\sin \Theta_{W} \cos \Theta_{W}} \gamma^{\mu} \begin{bmatrix} T_{3}^{f} \frac{1 - \gamma_{5}}{2} - \sin^{2} \Theta_{W} Q_{f} \end{bmatrix}$ $\Rightarrow = m_{w}/m_{z} \qquad V-A \text{ Kopplung}$ $W \xrightarrow{f}_{i} -i \frac{e}{\sqrt{2} \sin \Theta_{W}} V_{ij} \gamma^{\mu} \frac{1 - \gamma_{5}}{2}$ $\Rightarrow Flavor Talks (S.Menzemer, H.Lacker)$

7

$$g_{A_f} \stackrel{\text{def}}{=} T_3^f \qquad (=a_f)$$
$$g_{V_f} \stackrel{\text{def}}{=} T_3^f - 2\sin^2 \Theta_W e_f \quad (=v_f)$$

 g_{A_f} , g_{V_f}

 $Z \xrightarrow{f}_{m_{z}} f -i \frac{e}{\sin \Theta_{W} \cos \Theta_{W}} \gamma^{\mu} \left[T_{3}^{f} \frac{1 - \gamma_{5}}{2} - \sin^{2} \Theta_{W} Q_{f} \right]$ $\Rightarrow = m_{w}/m_{z} \qquad V-A \text{ Kopplung}$ $W \xrightarrow{f_{i}}_{m_{W}} f_{i} -i \frac{e}{\sqrt{2} \sin \Theta_{W}} V_{ij} \gamma^{\mu} \frac{1 - \gamma_{5}}{2}$

Flavor Talks (S.Menzemer, H.Lacker)

$$g_{A_f} \stackrel{\text{def}}{=} T_3^f \qquad (=a_f)$$

$$g_{V_f} \stackrel{\text{def}}{=} T_3^f - 2\sin^2\Theta_W e_f \quad (=v_f)$$

 $g_{A_f}, g_{V_f} \leftarrow (\text{HERA})$

 $Z \xrightarrow{m_z} f -i \frac{e}{\sin \Theta_W \cos \Theta_W} \gamma^{\mu} \begin{bmatrix} T_3^f \frac{1 - \gamma_5}{2} - \sin^2 \Theta_W Q_f \end{bmatrix}$ $\Rightarrow = m_w / m_z \qquad V-A \text{ Kopplung}$ $W \xrightarrow{f_i} -i \frac{e}{\sqrt{2} \sin \Theta_W} V_{ij} \gamma^{\mu} \frac{1 - \gamma_5}{2} \qquad (\text{HERA/Tevatron})$ Flavor Talks (S.Menzemer, H.Lacker)

André Schöning, ETH Zürich

DPG Jahrestreffen, Heidelberg, 5.-9. März 2007

Higgs und top Masse tragen bei zu W,Z-Selbstenergiekorrekturen Vorhersagen!

EW Kopplungskonstanten sind klein (im Gegensatz zur QCD)
 störungstheoretische Rechnungen!

SM Vorhersagen

Vorhersage von m, und m, durch SM Präzisionsmessungen über virtuelle Loopeffekte M. Grünewald et. al. -LEP1 and SLD 80.5 LEP2 (95%CL) SM erlaubt! direkte Suche [7e6] 80.4 □ 68% CL 80.3 LEP2 Δα 1000 **Tevatron** 200 150 175 → später m, [GeV]

Elektron-Proton Collider HERA

920 GeV Protonen + 27.5 GeV Elektronen

Physik bei HERA

Wirkungsquerschnitt

Kinematischer Bereich

Kinematischer Bereich HERA Q² (GeV²) HI 10 ZEUS Fixed Target Experiments: CCFR, NMC, BCDMS, 10³ E665, SLAC 10² 10 1 10 ⁻¹ Valenzregion • 10 -2 10-3 10 -1 10 -6 10 -5 10 4 1 x QCD (Partondynamik)

Elektroschwache Physik (hohe Energie)

DGLAP Evolution (Altarelli-Parisi Gleichungen)

Elektroweak Unificaton

NC Strukturfunktionen

Tiefinelastische Streuung:
$$\mathbf{e}^{\pm} \mathbf{p} \rightarrow \mathbf{e}_{\mathbf{A}}^{\pm} \mathbf{X}$$

$$\frac{d\sigma_{NC}^{\pm}}{dxdQ^{2}} \approx \frac{e^{4}}{8 \pi x} \left[\frac{1}{Q^{2}}\right]^{2} \left[Y_{+}\tilde{F}_{2} \mp Y_{-} x \tilde{F}_{3}\right]$$

$$Y_{\pm} = 1 \pm (1-y)^{2}$$

Strukturfunktionen (generalisiert):

QCD Studien:

$$\rightarrow F_2^{em} = \sum x(q_i + \bar{q}_i) \cdot e_i^2 \propto x(4U+D)$$

Die Strukturfunktion xF₃

19

Differenz von e⁻p und e⁺p Daten:

André Schöning, ETH Zürich

Funktion der Valenzquarks:

 $xF_3^{\gamma Z} = -x\tilde{F}_3 \frac{1}{a_e \Pi_Z}$

$$x F_{3}^{\gamma Z} = 2 x \cdot \left[e_{u} a_{u} (U - \bar{U}) + e_{d} a_{d} (D - \bar{D}) \right]$$
$$\int_{0}^{1} F_{3}^{\gamma Z} dx = \frac{1}{3} \int_{0}^{1} (2 u_{v} + d_{v}) dx = \frac{5}{3}$$

H1+Zeus Messung:

$$\int_{0.02}^{0.65} F_3^{\gamma Z} dx = 1.21 \pm 0.09 (stat) \pm 0.08 (syst)$$

Evidenz für gamma/Z Interferenz
Fingerabdruck von Valenz-Quarks

Statistisch limitiert!

Vergleich HERA-Tevatron

 γ^*/Z Interferenz verschwindet für: $m_{ee} = m_Z$

Z Vorwärts-Rückwärts Asymmetrie (xF₃) bei Tevatron

André Schöning, ETH Zürich

DPG Jahrestreffen, Heidelberg, 5.-9. März 2007

Tiefinelastische Streuung:

$$\frac{d\sigma_{CC}^{\pm}}{dxdQ^{2}} \approx \frac{g^{4}}{64 \pi x} \left[\frac{1}{M_{W}^{2} + Q^{2}} \right]^{2} \left[Y_{+} \tilde{W}_{2}^{\pm} \mp Y_{-} x \tilde{W}_{3}^{\pm} \right]$$

$$\tilde{W}_{2}^{\pm} \propto \sum x(D_{i} + \bar{U}_{i}) \qquad x \tilde{W}_{3}^{\pm} \propto \sum x(D_{i} - \bar{U}_{i})$$

$$\tilde{W}_{2}^{-} \propto \sum x(U_{i} + \bar{D}_{i}) \qquad x \tilde{W}_{3}^{-} \propto \sum x(U_{i} - \bar{D}_{i})$$
CC e⁺p cross section
$$\frac{d^{2}\sigma_{CC}^{+}}{dx dQ^{2}} = \frac{G_{F}^{2}}{2\pi} \left(\frac{M_{W}^{2}}{M_{W}^{2} + Q^{2}} \right)^{2} \cdot \underbrace{\left[\overline{u} + \overline{c} + (1 - y)^{2} \left(\overline{d} + s \right) \right]}$$
CC ep cross section
$$\tilde{\sigma} \left(x, Q^{2} \right) / x \text{ reduzierter CC WQ}$$

$$\frac{d^{2}\sigma_{CC}^{-}}{dx dQ^{2}} = \frac{G_{F}^{2}}{2\pi} \left(\frac{M_{W}^{2}}{M_{W}^{2} + Q^{2}} \right)^{2} \cdot \underbrace{\left[\overline{u} + c + (1 - y)^{2} \left(\overline{d} + \overline{s} \right) \right]}$$

Sensitive to u-quark density

HERA e⁺p Charged Current

sensitiv auf u-Dichte

sensitiv auf d-Dichte

Geladener Strom und W-Produktion

W-Ladungsasymmetrie beim Tevatron

sensitiv auf d/u Verhältnis als Funktion der Rapidität

komplementär zu HERA

Longitudinale Polarisationen: 20-50%
 Datensätze: links, rechts, e⁺, e⁻ á 10-80 pb⁻¹ analysiert

Neutraler Strom und Polarisation

$$\frac{d\sigma_{NC}^{\pm}}{dxdQ^{2}} \approx \frac{e^{4}}{8 \pi x} \left[\frac{1}{Q^{2}} \right]^{2} \left[\left[(Y_{+}\tilde{F}_{2}^{0} \mp Y_{-}x\tilde{F}_{3}^{0}) + \underbrace{P_{e}Y_{+}\tilde{F}_{2}^{P} \mp Y_{-}x\tilde{F}_{3}^{P}} \right] \right]$$
Polarisation
$$\tilde{F}_{2}^{0} = \sum x(q_{i} + \bar{q}_{i}) \cdot (e_{i}^{2} - 2e_{i}v_{i}v_{e}\Pi_{Z} + (v_{e}^{2} + a_{e}^{2})(v_{i}^{2} + a_{i}^{2})\Pi_{Z}^{2})$$

$$x\tilde{F}_{3}^{0} = \sum x(q_{i} - \bar{q}_{i}) \cdot (-2e_{i}a_{i}a_{e}\Pi_{Z} + 4a_{i}v_{i}v_{e}a_{e}\Pi_{Z}^{2})$$

Ζ

 γ/\mathbf{Z}

$$\tilde{F}_{2}^{P} = \sum x(q_{i} + \bar{q}_{i}) \cdot (2e_{i}v_{i}a_{e}\Pi_{Z} - 2a_{e}v_{e}(v_{i}^{2} + a_{i}^{2})\Pi_{Z}^{2})$$

$$x\tilde{F}_{3}^{P} = \sum x(q_{i} - \bar{q}_{i}) \cdot (2e_{i}a_{i}v_{e}\Pi_{Z} - 2a_{i}v_{i}(v_{e}^{2} + a_{e}^{2})\Pi_{Z}^{2})$$

axial coupling: $a = T^3$ γ/\mathbb{Z} vector coupling: $v = T^3 - 2e \sin^2 \Theta_W$

Analyse verschiedener Datensätze: e⁺p, e⁻p (polarisiert, unpolarisiert) um NC Kopplungen a_u,v_u,a_d,v_d zu bestimmen

Elektroschwache Quarkkopplungen

Elektroschwache Quarkkopplungen

Genaueste Bestimmung der u-Quarkkopplungen bei HERA!

• Kombinierter Fit von CC Parametern + Partondichten:

Proton-Antiproton Collider Tevatron

Fermilab:

980 GeV (anti-)protonen √s=1.96 TeV

André Schöning, ETH Zürich

DPG Jahrestreffen, Heidelberg, 5.-9. März 2007

Tevatron Leistung

Rekord Collider Run II Integrated Luminosity Luminositäten! 50.00 2800.00 Shutdown 2006 45.00 2400.00 Weekly Integrated Luminosity (pb⁻¹) 40.00 Luminosity (pb⁻¹) Detektor 2000.00 35.00 Modifikationen/Upgrades 30.00 1600.00 25.00 Run Integrated 1200.00 20.00 15.00 800.00 10.00 400.00 5.00 0.00 0.00 5 20 155 170 185 200 215 230 245 260 275 290 305 35 125 110 Week # (Week 1 starts 03/05/01)

2 fb⁻¹ Run II Daten auf Tape pro Experiment
Viele neue Ergebnisse mit 1 fb⁻¹ Run II Daten

W-Boson Masse

erste Messung der W-Masse bei Run II

<u>CDF Kollaboration</u> Neue Messung (Lumi=200 pb⁻¹)

$$W \to e \nu$$
, $W \to \mu \nu$

CDF II preliminary			L = 200 pb ⁻¹
m _T Uncertainty [MeV]	Electrons	Muons	Common
Lepton Scale	30	17	17
Lepton Resolution	9	3	0
Recoil Scale	9	9	9
Recoil Resolution	7	7	7
u _{II} Efficiency	3	1	0
Lepton Removal	8	5	5
Backgrounds	8	9	0
p _⊤ (W)	3	3	3
PDF	11	11	11
QED	11	12	11
Total Systematic	39	27	26
Statistical	48	54	0
Total	62	60	26

Elektronen + Myonen kombiniert:

$$M_w = 80413 \pm 34 \pm 34 \text{ MeV/c}^2$$

Transversale Masse (Jakobische-Peaks):

DPG Jahrestreffen, Heidelberg, 5.-9. März 2007

W-Boson Masse

Diboson Produktion am Tevatron

Dreiboson-Eichkopplungen

Erste Messung von WZ Produktion

• <u>CDF Kollaboration</u> (Lumi=1.1fb⁻¹) Leptonische Zerfälle: $WZ \rightarrow l' \nu l l$ Beobachtet: 16 (12.4 Signal + 2.7 BG)

$$\sigma(p \,\overline{p} \rightarrow WZ) = 5.0^{+1.8}_{-1.4}(stat.) \pm 0.4(syst.) \, pb$$

$$\sigma_{theor} = 3.7 \pm 0.3 \, pb$$

Gemeinsame Obergrenze auf WZ+ZZ: $\sigma(p \bar{p} \rightarrow WZ + ZZ) < 15.2 \ pb$ (95% CL)

• <u>D0 Kollaboration</u> (Lumi=760-860 pb⁻¹) Leptonische Zerfälle: $WZ \rightarrow l' \vee ll \quad (l = e, \mu)$ Beobachtet: 12 (7.5 Signal + 3.6 BG) $\sigma(p \, \overline{p} \rightarrow WZ) = 4.0^{+1.9}_{-1.5} \, pb$

$$\sigma_{theor}$$
=3.7±0.3 pb

₹_T [GeV]

DPG Jahrestreffen, Heidelberg, 5.-9. März 2007

Wy Produktion

• <u>CDF Kollaboration</u> (Lumi=1000 fb⁻¹)

Wirkungsquerschnitt:

 E_{T}^{γ} >7 GeV und $\Delta R(I,\gamma)$ >0.7:

 $\sigma(p \bar{p} \rightarrow W \gamma \rightarrow l \nu \gamma) = 19.1 \pm 1.0(stat.) \pm 2.6(syst.) pb$ $\sigma_{theor} = 19.3 - 13.4 pb$

D0 Kollaboration (Lumi=~900 pb⁻¹)

Wirkungsquerschnitt:

 $E_{\tau}^{\gamma} > 7 \text{ GeV}$, $\Delta R(I,\gamma) > 0.7 \text{ und } M_{\tau}(I,\gamma;E_{\tau}^{\text{miss}}) > 90 \text{ GeV}$:

 $\sigma(p \,\overline{p} \to W \,\gamma \to e \,\nu \,\gamma) = 3.12 \pm 0.53 \,pb$ $\sigma(p \,\overline{p} \to W \,\gamma \to \mu \,\nu \,\gamma) = 3.21 \pm 0.53 \,pb$

sehr gute Übereinstimmungen mit den Vorhersagen!

WW Produktion

• <u>CDF Kollaboration</u> (Lumi=825 fb⁻¹) Dilepton Zerfall: $WW \rightarrow l' \nu l \nu$ $(l=e, \mu)$ Beobachtet: 95 (52 Signal + 38 BG)

 $\sigma(p \,\overline{p} \rightarrow WW) = 13.6 \pm 2.3(stat.) \pm 2.0(syst.) \, pb$

 $\sigma_{theor} = 13.0 - 13.5 \ pb$

• <u>D0 Kollaboration</u> (Lumi=252 pb⁻¹) Dilepton Zerfall: $WW \rightarrow l' \nu l \nu$ $(l=e, \mu)$ Beobachtet: 25 (16.1 Signal + 8.0 BG)

 $\sigma(p \,\overline{p} \to WW) = 13.8^{+4.3}_{-3.8}(stat.)^{+1.5}_{-1.3}(syst.) \,pb$ $\sigma_{theor} = 13.0 - 13.5 \,pb$

- gute Übereinstimmungen mit den Vorhersagen!
- Grenzen auf anomale Dreibosonkopplungen

Anomale Dreibosonkopplungen

• Analyse von WW(WZ) Produktion:

Dreibosonkopplungen (TGC):

$$egin{aligned} rac{\mathcal{L}_{WWV}}{g_{WWV}} &= ig_1^V (W^\dagger_{\mu
u} W^\mu V^
u - W^\dagger_\mu V_
u W^{\mu
u}) \ &+ i\kappa_V W^\dagger_\mu W_
u V^{\mu
u} + rac{i\lambda_V}{M_W^2} W^\dagger_{\lambda\mu} W^\mu_{\
u} V^{
u\lambda} \end{aligned}$$

LEP Grenzen (PDG): $\Delta \kappa_{\gamma} = -0.027 \pm 0.045$ $\lambda_{\gamma} = -0.028 \pm 0.021$ $\Delta \kappa_{z} = -0.076 \pm 0.064$ $\lambda_{z} = -0.088 \pm 0.064$

- LEP Grenzen eine etwa Größenordnung kleiner
- Tevatron testet TGC bei höheren Massen

D0 252 pb⁻¹

Coupling		95% C.L. Limits	$\Lambda~({\rm TeV})$
$WW_{2} = WWZ$	λ	-0.31, 0.33	15
$VV VV \gamma = VV VV \Sigma$	$\Delta \kappa$	-0.36, 0.47	1.0
$WW_{2} = WW/7$	λ	-0.29, 0.30	2.0
$VV VV \gamma = VV VV \angle$	$\Delta \kappa$	-0.32, 0.45	2.0
	λ	-0.34, 0.35	1 5
HI5Z	$\Delta \kappa_{\gamma}$	-0.57, 0.75	1.5
CM WW.	λ_Z	-0.39, 0.39	2.0
$SMWW\gamma$	$\Delta \kappa_Z$	-0.45, 0.55	2.0
CM HUHZ	λ_{γ}	-0.97, 1.04	1.0
SIM W W Z	$\Delta \kappa_{\gamma}$	-1.05, 1.29	1.0

Statistisch limitiert!

André Schöning, ETH Zürich

DPG Jahrestreffen, Heidelberg, 5.-9. März 2007

Neue Top Resultate

CDF

D0

Top Mass	 dilepton (ME) dilepton (ME,btag) lepton+jets (ME) all hadronic (NN,templ) all hadronic (templ) 	1020 pb ⁻¹ 1020 pb ⁻¹ 940 pb ⁻¹ 1020 pb ⁻¹ 940 pb ⁻¹	 e mu (templates) e mu (ME) dilepton (LL,btag) lepton+jets (ideogram) 	840 pb ⁻¹ 840 pb ⁻¹ 370 pb ⁻¹ 370 pb ⁻¹
Top Paare	 lepton+jets (btag, NN) all hadronic (btag,NN) 	700 pb ⁻¹ 1020 pb ⁻¹	 dilepton (LL,templates) hadrons (btag) 	900 pb ⁻¹ 405 pb ⁻¹
Single top	 leptonic (NN) leptonic (LL) leptonic (ME) 	955 pb ⁻¹ 955 pb ⁻¹ 955 pb ⁻¹	 leptonic (Tree, ME, NN)) 900 pb⁻¹
Sonstiges	 top W-helicities resonant ttbar prod. search for tt → lτvvqq 	955 pb ⁻¹ 1000 pb ⁻¹ 350 pb ⁻¹	top W-helicitiestop charge	370 pb ⁻¹ 370 pb ⁻¹

Selektion von Top Ereignissen

CDF + D0 verwenden alle Zerfallskanäle und unterschiedlichste Analysetechniken

Problem:

- kleines Signal und riesiger Untergrund
- sehr viele Zerfallskanäle

Methoden:

- Neuronale Netze
- Multivariante Likelihoods
- Matrixelementmethoden
- Templates
- Entscheidungsbäume (adaptive)
- Ideogramme

Anwendungen

- kinematische Rekonstruktion
- Selection
- Signalextraktion

viele – sehr komplizierte Analysen !

Top Pair Decay Channels

Messung der Top Masse

Aussichten Top Masse

 Δm_{t} schon genauer als projeziert!

$\Delta m_{t} \sim 1.2 \text{ GeV}$ ist zu schaffen!

Elektrische Ladung des Top Quarks

Bekannt:

top zerfällt in b-quarks: $t \rightarrow b W^{\pm}$

→ mögliche Ladungen: |Q_{top}|= 2/3, 4/3

Messung (D0):

Untersuchung semi-leptonischer top-quark Zerfälle

b(-1/3)

Exotic-Charge Top Quark

b (+1/3)

W-Helizität in Top Zerfällen

Winkelverteilung hat drei Anteile:

• Ergebnisse CDF (955pb⁻¹): $f_{0} = +0.59 \pm 0.12(stat.)_{-0.06}^{+0.07}(syst.)$ $f_{+} = -0.03 \pm 0.06(stat.)_{-0.03}^{+0.04}(syst.)$ $f_{+} < 0.10 \quad (95\% \text{ CL})$

Ergebnisse D0 (370pb⁻¹):

 $f_{+} = -0.056 \pm 0.080 (stat.) \pm 0.057 (syst.)$

Vorhersage der Higgsmasse

Vorhersage der Higgsmasse

Vorhersage der Higgsmasse

Stand: 2007

Higgs und Supersymmetrie

Top Paarproduktion

DØ Run II Prel	iminary		Fall 2006
dilepton/l+jets combin 230 pb ⁻¹	ied H	• • •	7.1 ^{+1.2} ^{+1.4} _{-1.2} _{-1.1} pb
dilepton (topological) 370 pb ⁻¹	н	• H	8.6 ^{+2.3 +1.2} _{-2.0 -1.0} pb
Itrack/emu combined 370 pb ⁻¹		H H	8.6 ^{+1.9 +1.1} _{-1.7 -1.1} pb
τ +jets (b-tagged) NEW 350 pb ⁻¹	⊢		5.1 ^{+4.4} +0.3 pb
all-jets (b-tagged) NEW	′ ⊢_●	4	4.5 ^{+2.4} ^{+0.3} _{-2.2} _{-0.3} pb
I+jets (μ-tagged) NEW 420 pb ⁻¹	r	•1	7.3 ^{+2.0} ^{+0.4} _{-1.8} _{-0.4} pb
I+jets (b-tagged) NEW 420 pb ⁻¹	H	-	6.6 ^{+0.9 +0.4} _{-0.9 -0.4} pb
I+jets (topological) NEW 910 pb ⁻¹	' ⊢ •		6.3 ^{+1.1} ^{+0.4} _{-1.1} _{-0.4} pb
m _{top} = 175 GeV	Kidonakis and Vo Cacciari et al., JF	ogt, PRD 68, 114014 (2 IEP 0404, 068 (2004)	003)
0	2.5 5	7.5 10 12.	5 15 17.5
		σ(p	p→tt) [pb]
	107		

 $\sigma_{theor} = 6.7^{+0.7}_{-0.9} \ pb \ (m_{top} = 175 \text{ GeV})$

DPG Jahrestreffen, Heidelberg, 5.-9. März 2007

Top Paarproduktion

Theoriefehler ~ 15% > Top-Massenunsicherheit!

gute Übereinstimmung mit Theorie

Single Top Produktion

Single Top Produktion

- schwacher Prozess
 - Signatur: W + 2jets
 - Untergrund: Wbb
- Messung von |V_{tb}|

sensitiv auf neue Physik:

Single Top Produktion

SM Erwartung: $\sigma_{theor} = 2.9 \pm 1.0 \text{ pb}$

CDF Resultate: (955pb⁻¹)

NN Methode: $\sigma_t = 0.2^{+1.1}_{-0.2} pb$ $\sigma_t < 2.6 pb$ (3.8 erw.) (95%CL) $\sigma_s = 0.7^{+1.5}_{-0.7} pb$ $\sigma_s < 3.7 pb$ (2.9 erw.) (95%CL) kombiniert: $\sigma_{s+t} < 2.6 pb$ (5.7 erw.) (95%CL)

André Schöning, ETH Zürich

Single top Cross Section [pb]

You were right: There's a needle in this haystack...

Higgs Produktion und Zerfall am Tevatron

Higgs Suche am Tevatron

Produktion

viele interessante Kanäle				
m _H klein:	$WH \rightarrow Ivbb$ ZH $\rightarrow IIbb, vvbb$			

W+Z Higgs Strahlung

$\textbf{WH} \rightarrow \textbf{l} \ \textbf{v} \ \textbf{bb}$

$ZH \rightarrow 11 bb$

- Kanäle sensitiv af kleine Higgs Massen
- Pro Kanal fehlt ein Faktor ~10 um das SM Higgs Boson zu beobachten

Observed

 $H \rightarrow W^+W^-$

• $BR(H \rightarrow W^+W^-)$ gross bei hoher Higgs Masse

CDF 1fb⁻¹

30

20

10

0

໔/ປ<mark>s</mark>M

CDF Run II Preliminary L=1fb⁻¹ DØ Run II Preliminary, ~950 pb⁻¹ σ×BR(H→WW^(*)) (pb) 1 01 01 01 HWW H-WW (*) ->evev, evuv Observed Expected 1-sigma 95% CL Limit 2-sigma **Excluded at LEP** 4th generation ····· Expected 4th Generation Model

10⁻¹

100

120

140

D0 ~1fb⁻¹

Standard Model

140

160

120

Standard Model

180

Higgs mass (GeV)

200

160

200

180

 $m_{\rm H}$ / GeV/ c^{2}

STAND Sommer 2006

CDF Ergebnisse 0.4-1fb⁻¹

CDF/D0 Ergebnisse 0.4-1fb⁻¹

effektiv ~ 1.3fb⁻¹

bei m_H=160 GeV fehlt nur noch ein Faktor 4!

Verbesserung der Sensitivität durch Kombination!

- $H \to \tau^+ \tau^-$ (SM), $\Phi \to \tau^+ \tau^-$ (MSSM)
- BR($\Phi \rightarrow \tau \tau$) etwa 1/10 BR($\Phi \rightarrow bb$)
- BR($\Phi \rightarrow \tau \tau$) kann gross sein bei hohen Higgs Massen in MSSM (2HDM)
- Masse nur ungenau rekonstruiert (2-4 fehlende Neutrinos)

CDF: L=1fb⁻¹

Zusammenfassung/Ausblick

HERA Hochenergie-Datenname endet in zwei Wochen

- erst etwa die Hälfte der HERA II Daten analysiert
- Vorhersagen des SM wurden bei HERA bestätigt
- vollständige Analyse aller HERA II Daten wird eine präzise Messung der schwachen NC Kopplungen leichter Quarks erlauben

Tevatron wird vermutlich noch einige Jahre im Betrieb bleiben!

- W, Top neue Präzisionsmessungen vom RunII
- Physik jenseits des SM kann direkt und indirekt getestet werden
- Chance auf Higgsentdeckung bei kleinen Higgsmassen und 8 fb⁻¹

LHC wird in naher Zukunft utlimative Antworten liefern

- Higgs
- Physik jenseits des SM

- Organisatoren
- O. Behnke
- M.-O. Bönig
- D. Glenzinski
- B. Heinemann
- R. van Kooten
- G. Leibengut
- B. List
- J. Meyer
- B. Naroska

