Proton Structure and Low X Physics

Outline

Introduction
Parton distributions
Evolution at low x
Non-linear dynamics

Victor Lendermann Universität Heidelberg DPG-Frühjahrstagung Heidelberg, 9.03.2007

QCD and Hadron Scattering

QCD: perturbative or non-perturbative? That is the question.

Factorisation Theorem

Non-perturbative input is given by universal parton distributions (PDF)

PDFs must be determined experimentally and can be used for other scattering processes

Inclusive Deep Inelastic ep Scattering

DIS – best method to determine the proton structure with highest precision

boson virtuality Q^2 = resolution scale

fractional momentum x of struck quark

determine PDFs: $q_i(x, Q^2)$, $g(x, Q^2)$

Determination of Quark Distributions

Cross sections: $\sigma_{e^+p}^{NC}$, $\sigma_{e^-p}^{NC}$, $\sigma_{e^+p}^{CC}$, $\sigma_{e^-p}^{CC}$ have different sensitivity to different quark flavours

Almost full flavour decomposition is possible with HERA only

Highest precision by combining with fixed target DIS, Drell-Yan, ...

DGLAP Evolution of PDFs

PDFs – intrinsically non-perturbative but evolve perturbatively in Q^2

Only need start-up distributions q(x), g(x) at starting scale Q_0^2

Inclusive DIS Data

7

Inclusive DIS Data

♦ 5 orders of magnitude in x and Q^2 NLO DGLAP fits well describe inclusive data NLO = $O(\alpha_s^2)$, first NNLO $O(\alpha_s^3)$ fits available

Data precision 2 – 3% in bulk region 1 – 2% seem feasible

High Q² dominated by stat. errors
 Factor 2 reduction is aimed at with HERA II

So what is needed by LHC?

PDFs for LHC

$$x_{1,2} = \frac{M}{\sqrt{S}} \exp\left(\pm \text{rapidity}\right)$$

Precise quark and gluon densities are required in the whole *x* range

Solution:

Evolve from HERA Q^2 to LHC scales M^2

Luminosity Measurement at LHC with W, Z

 $\sigma = \frac{N}{L}$ \implies Use reference `standard candle' process to measure lumi: $L = \frac{N_{\text{ref}}}{\sigma_{\text{ref}}}$

W and Z production is well suited

- \blacklozenge High rate: few Hz at low lumi \rightarrow small stat. errors
- \diamond Well measurable: 1 2% syst. error for Z
- Well-known parton x-section: 1% at NNLO

Luminosity Measurement at LHC with W, Z

 $\sigma = \frac{N}{L}$ \implies Use reference 'standard candle' process to measure lumi: $L = \frac{N_{ref}}{\sigma_{ref}}$

W and Z production is well suited

р

W, Z

- \blacklozenge High rate: few Hz at low lumi \rightarrow small stat. errors
- \blacklozenge Well measurable: 1-2% syst. error for Z
- Well-known parton x-section: 1% at NNLO

Luminosity Measurement at LHC with W, Z

Use reference `standard candle' process to measure lumi: $L = \frac{N_{ref}}{\sigma_{ref}}$ $\sigma = \frac{N}{T}$

W and Z production is well suited

р

W, Z

 \blacklozenge High rate: few Hz at low lumi \rightarrow small stat. errors

 W^+

- \diamond Well measurable: 1 2% syst. error for Z
- Well-known parton x-section: 1% at NNLO

Crucial issue – knowledge of PDFs: Error would be $\sim 15\%$ without HERA

- ♦ How good is our knowledge of PDFs?
- ♦ Is DGLAP sufficient to extrapolate PDFs to LHC scales?
- Are non-linear QCD effects relevant?

Let's look...

PDF Extraction

Typical uncertainties: u density 2-5% , d density 5-8% , gluon density $10-\ldots\%$

Example

H1/ZEUS mostly agree but

Differences

- Choice of data sets
- Treatment of systematic errors
- PDFs to extract
- Form of x distribution
- Number of parameters
- Constraints on parameters

Many effects understood!

. . .

Differences between H1 and ZEUS

Cooper-Sarkar and Gwenlan, HERA-LHC Workshop

Different data, same analysis

Same data, different analysis

Differences already in the data

H1 and ZEUS intend to produce common data sets

- ♦ How good is our knowledge of PDFs?
- ♦ Is DGLAP sufficient to extrapolate PDFs to LHC scales?
- Are non-linear QCD effects relevant?

Forward Jets at Low X

Forward Jets at Low X

- Parton shower schemes with different ordering
 - CCFM (MC Cascade)
 - CDM (MC Ariadne)
 - work better than DGLAP at low x

Resummation at Low X

Victor Lendermann, *Proton Structure and Low x Physics*

DPG-Frühjahrstagung, Heidelberg, 9.03.2007

Longitudinal Structure Function F_L

Calculations

- Large spread of calculations for gluon and F_L
- Critical corner low Q^2 and low x
- Can be used to test resummation approaches

White and Thorne

Victor Lendermann, Proton Structure and Low x Physics

DPG-Frühjahrstagung, Heidelberg, 9.03.2007

Future Low Energy Run

Cross section:

$$\sigma(x,Q^2) \propto F_2(x,Q^2) - \frac{Q^4}{s^2 x^2 \dots} F_L(x,Q^2)$$

Measure σ at the same x, Q^2 for different s

H1 Simulation

 30 pb^{-1} at $E_p = 920 \text{ GeV}$ 10 pb^{-1} at $E_p = 460 \text{ GeV}$

Can differentiate between calculations

Decision taken. Run in preparation

Last Question

♦ How good is our knowledge of PDFs?

♦ Is DGLAP sufficient to extrapolate PDFs to LHC scales?

Are non-linear QCD effects relevant?

Going to High Parton Densities (Lowest X)

Non-linear QCD dynamics = multi-gluon exchange

Gluon density rises steeply towards low x

Data in Transition Region

Victor Lendermann, *Proton Structure and Low x Physics*

Extraction of $\lambda(Q^2)$

Extraction of $\lambda(Q^2)$

Dipole Models

Use colour $q\bar{q}$ dipoles as degrees of freedom

Proton rest frame: Photon fluctuates in $q\bar{q}$ pair which interacts with proton

Dipole Saturation Model

Photon fluctuates in $q\bar{q}$ pair which interacts with proton

Golec-Biernat, Wüsthoff

Dipole-proton cross section:

At small r: $\hat{\sigma} \sim \frac{r^2}{R(x)^2}$

At large r: non-linear interactions \rightarrow saturation

Saturation Region in Dipole Model

♦ For $Q^2 ≤ 1 - 2 \, \text{GeV}^2$ saturation model describes transition to soft interactions with only 3 parameters

For pQCD Q² scales saturation region is beyond HERA reach

Still, non-linear effects can affect pQCD evolution at low x and Q^2

Dipole Models

Dipole models describe very successfully inclusive diffraction and exclusive channels (light VM, J/ψ , DVCS)

They can be used to describe diffraction at pp and multiple interactions (underlying event, minijets ...)

Summary

- The quest for precision and deeper undestanding continues Experiments \longrightarrow statistics, combined data, F_L , ... Theory \longrightarrow NNLO, resummation, non-linear effects ...
- DGLAP limitations are clearly visible in semi-inclusive measurements
 Alternative parton cascade models
- Models for non-linear dynamics are further developed
 - \longrightarrow Transverse picture of the proton
 - \longrightarrow Understanding of soft hadron interactions
 - \longrightarrow Diffraction, Multiple Interactions

Additional Information

Forward Jets at Low X

 \blacktriangleright Low *x* – long parton chain

- Look at forward jet start of the chain
- ♦ NLO is not sufficient

Including Jet Measurements in PDF Fits

 \diamond HERA data are stat. limited at high x (high Q^2)

- Theor. group include TeVatron jet data Large systematics due to jet energy scale
- ♦ ZEUS included its jet data in PDF fits \implies Improved gluon at medium-high x

Heavy Flavour Measurements

Inclusive c and b based on long lifetime

 \blacklozenge Inclusive D^* production

Possible impact on PDFs

- Sea decomposition
 (F₂^{cc̄} already used by some theor. fit groups)
- Improve gluon distribution?

Large statistics is expected at HERA II

Indirect Extraction of F_L

 \Diamond NC ep cross section

Inelasticity $y = Q^2/(xs)$

$$\frac{d^2\sigma}{dx\,dQ^2} = \frac{2\pi\alpha^2}{Q^4x}Y_+ \left\{F_2(x,Q^2) - \frac{y^2}{Y_+}F_L(x,Q^2)\right\} \qquad Y_{\pm} = 1 \pm (1-y)^2$$

 F_L contribution is significant only at high y = at low x

Reduced cross section $\sigma_r = F_2(x, Q^2) - \frac{y^2}{Y_+}F_L(x, Q^2)$

Geometric Scaling at $x < 10^{-2}$

Stasto, Golec-Biernat, Kwieciński updated plot by Marquet, Schoeffel

F_2 Description by Saturation Model

Bartels, Golec-Biernat, Kowalski

GBW (+ DGLAP evolution in pQCD region)