Dijet production in diffractive DIS and photoproduction at ZEUS

DIS 2007

Diffraction and vector mesons parallel session 17 April 2007, Munich, Germany Yuji Yamazaki (Kobe University, ZEUS) On behalf of the ZEUS collaboration

Introduction: why jets in diffraction

- Diffractive parton densities:
 - Extracted from $F_2^{D(3)}$ (DDIS) sensitive to quarks
 - Gluons from scaling violation, poorer constraint

- Jets are produced mainly by BGF diagram
 - Directly sensitive to gluons
 - Dijet events allows to reconstruct z_P , the longitudinal momentum fraction of the parton in the exchange.

Jet cross sections and factorisation

- Jet cross sections can be calculated in pQCD using the factorisation formula
 - Example: jet cross section $d\sigma/dE_T$ at given x_P

$$\frac{d\sigma_{\gamma^*p}}{dE_T}\bigg|_{x_{\mathbf{P}}} = \sum_{i} \int dt \int_{x}^{x_{\mathbf{P}}} \left[dz \frac{d\hat{\sigma}^{i\gamma^*}(z,\mu^2,x_{\mathbf{P}})}{dE_T} f_i^D(z,\mu^2,x_{\mathbf{P}},t) \right] \qquad \text{for a cross section}$$

$$f_i^D: \text{diffractive}$$

$$\text{parton dense}$$

$$\sigma^{i\gamma^*}$$
: photon - parton cross section

parton densities

- They can give constraint to the gluons in the diffractive exchange, assuming the factorisation
 - OK for DIS, diffractive factorisation theorem proven
- In photoproduction, factorisation may not hold
 - Test of factorisation using the parton densities that describe the DIS dijet cross sections

Dijets in DIS – comparison with NLO

Preliminary in EPS05

- Long. invariant $k_T R = 1.0$, $\gamma * p$ frame
- $E_{T1} > 5 \text{ GeV}, E_{T2} > 4 \text{ GeV}$
- $5 < Q^2 < 100 \text{ GeV}^2$, 100 < W < 250
- $x_{\mathbf{P}} < 0.03$
- Good agreement with the NLO within uncertainty, using
 - H1 fit 2002
 - ZEUS LPS usingD* in DIS in the fit
- Good sensitivity to the gluon density

Photoproduction: testing factorisation

- The famous factorisation breaking in pp diffraction
 - Thought to be re-scattering effect
- It is claimed that ...
 - The suppression should be in the hadron-like resolved photon
 - Not in direct events

"Final" result on diffractive dijets in photoproduction

- Long. invariant $k_T R = 1.0$, LAB frame
- $E_{T1} > 7.5 \text{ GeV}, E_{T2} > 6.5 \text{ GeV}$
- $Q^2 < 1 \text{ GeV}^2$, 0.2 < y < 0.85
- $x_{\mathbf{P}} < 0.025$

Data are final,

In comparison with the NLO calculation using the program from Klasen+Kramer

- Note on the NLO calculation
 - We implemented recent DPDFs in the program
 - However, the code could not exactly reproduce the H1 cross section predictions from Frixione+Ridolfi
 - Agreeing by ~ 10%, shape slightly different
 - Asking for cross-check to Michael Klasen
- NLO calculations in the plots are preliminary
 Following discussion assumes they are correct by ~10%.

PHP dijets – entire x_{γ}^{OBS} range

- No strong evidence of the cross section suppression
- Good agreement with H1 2006 fit B PDF
 - H1 2006 Fit A and ZEUS LPS: ~
 20 % higher, but within uncertainty

Message inconsistent with H1? No!

- H1 starts at lower E_T jet
 - □ H1: $E_T^{\text{jet1}} > 5 \text{ GeV}$
 - ZEUS > 7.5 GeV
- \mathbf{x}_{P} range:
 - □ H1: < 0.03, ZEUS < 0.025
- E_T^{jet1} in the data seems harder than the NLO
 - Both in H1 and ZEUS
 - Seems the reason to have more suppression at low E_T^{jet} i.e. the H1 result
- Problem in the NLO? Or, suppression only at low- E_T^{jet} events?

More in detail: $x_{\gamma}^{OBS} < 0.75$ (resolved enriched)

- Good description by the NLO in general
- H1 2006 fitB and ZEUS LPS are preferred
 - Within the scale uncertainty, though

$x_{\gamma}^{OBS} \ge 0.75$ (direct enriched)

 NLO giving fair description of the data

Conclusions on the ZEUS dijet data

- DIS dijet agrees with the DPDFs (H1 2002(prel.), LPS+D*)
- ZEUS PHP measurement for Et > 7.5 GeV :
 - fairly good agreement with the NLO prediction with the recent parton densities, which describe the DIS jet data
 - No strong factorisation breaking
- No conflicting message with H1
 - □ H1 measures at lower E_T, higher x_P
 - □ E_T distribution may not be well reproduced by NLO:
 Low-E_T cross section tend to be low, for both H1 and ZEUS

Small suppression at PHP: déjà vu?

- Example: leading baryons
 - $0.6 < x_L < 0.97$ for proton
 - $0.6 < x_L < 0.82$ for neutron
- About 20% suppression in photoproduction
- Explained by absorption models: more in W. Schmidke's talk
 - Models say suppression of small configuration = high-Pt events
 - → Suppression depending on B-slopes

Discussion

- There seems no large suppression in the PHP cross sections but for small-E_T^{jet} events (H1).
- The suppression is both in direct and resolved, if any.
- Is the HERA PHP data consistent with the re-scattering models explaining the Tevatron suppression? Apparently not, both in quality and quantity.
- We need more direct comparison between Tevatron and HERA
 - □ Measure in the same x_P range (Pomeron vs Reggeon) Tevatron data are $0.035 < \xi(x_P) < 0.095$, HERA ~ 0.02
 - B-slope, the same between Tevatron and HERA?