

Multi-lepton production in ep collisions at ZEUS

Osamu Ota on behalf of ZEUS collaboration Tokyo Metropolitan University DIS2007, Munich, 19.Apr.2007

Contents

- Introduction / HERA, Multi-leptons
- Motivation
- Multi-electrons analysis
- Di-taus analysis
- Conclusions

DESY, Hamburg in Germany.only ep collider in the world.

•HERA-II (2003~)

- -Luminosity upgrade
- -Colliding experiment@ZEUS,H1

Introduction / Multi-leptons@HERA

- Multi-lepton production in e-P collisions can be explored up to $M_{ee} \sim O(100 \text{GeV})$
- The dominant is QED process as predicted by the Standard Model (SM).

• Any excess over the SM prediction, especially at high mass region, can be sensitive to new phenomena.

Osamu Ota

DIS2007 workshop@Munich

Motivation

Analysis with HERA-I data. Reported at DIS03 workshop.

Type	Data SM		GRAPE NC DIS		QEDC
all ee	191	213.9 ± 3.9	182.2 ± 1.2	23.9 ± 3.7	7.8 ± 0.5
$E_{T,1} > 30 \mathrm{GeV}$	6	5.7 ± 0.3	4.4 ± 0.2	0.9 ± 0.2	0.4 ± 0.1
$M_{12}>100{\rm GeV}$	2	0.77 ± 0.08	0.47 ± 0.05	0.12 ± 0.06	0.18 ± 0.03

 Table 2: Number of selected events with two electrons in the data and simulations of Standard Model processes.

- -Consistent with the SM and no excess was found. -H1 observed excess in Data at high M_{12} .
- •Since then, we took a large amount of luminosity in HERA-II.
 - -Of those data, preliminary for ICHEP06 with ~ 300 pb-1.
 - Analysis with similar phase space of H1 with a much increased luminosity ~150 pb-1, total 446 pb-1.

□<u>Data taking</u> : 1996-2006 □<u>Luminosity</u> : 446pb-1

Event topology

Distributions in ee topology

- $\begin{array}{l} \mathsf{P}_{\mathsf{T},1} & : \mbox{Pt of } 1^{st} \mbox{ electron.} \\ \mathsf{P}_{\mathsf{T},2} & : \mbox{Pt of } 2^{nd} \mbox{ electron.} \\ \mathsf{P}_{\mathsf{T},3} & : \mbox{Pt of } 3^{rd} \mbox{ electron.} \end{array}$
- $\theta_{e,1}$: θ of 1st electron. $\theta_{e,2}$: θ of 2nd electron. $\theta_{e,3}$: θ of 3rd electron.

 In eee topology, also good agreement with the SM

Osamu Ota

Mass spectrum

• M_{12} = Mass of two highest Pt electrons.

•The SM gives a good description of the measurements.

Results

 M_{12} >80GeV

Topology	DATA	SM	GRAPE	QEDC	NC
ee	15	14.0±1.1	5.7±0.6	6.0±0.6	2.2±0.4
eee	3	$3.4^{+0.6}_{-0.3}$	$\textbf{3.4}\pm\textbf{0.3}$	< 0.2	< 0.5

Topology	DATA	SM	GRAPE	QEDC	NC
 ee	5	4.3±1.1	1.1±0.2	2.3±1.1	0.9±0.2
eee	1	$1.1^{+}_{-}0.5$	$1.1\!\pm\!0.1$	< 0.02	< 0.5

- Good agreement between Data and Mc
- •Upper limits at 68% given.
- Includes electron energy uncertainty and Luminosity uncertainty.

In ee topology, high mass events are formed from two central high-Pt electrons.
In eee topology, such events formed from one forward and one central electron.

Highest mass event

Acceptance

ZEUS

ee : we maintain a high acceptance in high-mass region. eee : acceptance remains reasonable over full mass region.

□Data taking : 2005 □Luminosity : 135 pb-1

SM Background

Di-taus decaying to electron and muon.
 - Br = 6.19%

Di-muons events.
 One muon pass through the beam pipe

Clever selection is necessary to remove Di-muons events.

•Very challenging analysis!! \rightarrow First ZEUS results.

DIS2007 workshop@Munich

Event selection

•Electron identification :

-Match track to EM cluster in the CAL.

 $-E_e > 4GeV, \theta_e < 150^\circ$

•Muon identification :

- -Track from tracking chamber match to the MIP cluster in CAL.
- -Track from MUON chamber match to the one from tracking chamber.

-Pt>2GeV

→ Needed further BG rejection

Di-muons (BG) rejection

•At HERA, E-P_z is conserved to be 55GeV ($2E_{beam}$) unless particles escape in –z direction.

-Initial state : $e(E_e 0,0,-P_e)$, $P(E_p,0,0,P_p)$

Signal

-sometimes electron escapes down beam pipe

Di-muons (BG) -electron must be a scattered electron.

Required E-Pz < 45GeV

Osamu Ota

<u>Di-muons (BG) rejection (cont'd)</u>

•Require no extra muon candidates found with looser selection criteria.

Results

ZEUS

Event display

Osamu Ota

- Multi-electrons
 - Analysis of HERA-I and HERA-II data 446 pb⁻¹ with similar H1 phase space.
 - Data and MC are in good agreement in ee and eee topologies.
 - No excess is found in high-mass region.
- Di-taus
 - Analyzed HERA-II data 135 pb⁻¹
 - Clever BG rejection was developed
 - Finally, 3 events are found and no BG expectation.
 - Event yield is consistent with the SM.

<u>Back up slide</u>

The ZEUS detector

 $100 \,\mu$ m at $\theta = 90^{\circ}$, 1mm at $\theta = 20^{\circ}$

ZEUS multi-electron analysis

Selection	Data	SM	GRAPE	QEDC	NC	
e^+p (L=144 pb ⁻¹)						
"ee" $M_{12} > 50 \text{ GeV}$	26	31 ± 5	25 ± 3	2 ± 0.4	4 ± 1.4	
"ee" $M_{12} > 100 {\rm GeV}$	1	0.8 ± 0.4	0.5 ± 0.1	0.2 ± 0.2	$0.10\substack{+0.13 \\ -0.09}$	
"eee" $M_{12} > 50 {\rm GeV}$	6	8 ± 1	8 ± 1	< 0.06	< 0.2	
"eee" $M_{12} > 100 \mathrm{GeV}$	1	$0.40^{+0.2}_{-0.03}$	0.40 ± 0.03	< 0.01	< 0.2	
$e^{-}p$ (L=152 pb ⁻¹)						
"ee" $M_{12} > 50 \; {\rm GeV}$	27	36 ± 5	23 ± 3	4 ± 0.9	9 ± 1.9	
"ee" $M_{12} > 100 {\rm GeV}$	0	0.7 ± 0.3	0.4 ± 0.1	0.2 ± 0.2	$0.10\substack{+0.13\\-0.10}$	
"eee" $M_{12} > 50 {\rm GeV}$	6	7 ± 0.8	7 ± 0.8	< 0.07	< 0.2	
"eee" $M_{12} > 100 {\rm GeV}$	0	$0.40^{+0.2}_{-0.03}$	0.40 ± 0.03	< 0.01	< 0.2	

IHERA-I + HERA-II -Analyzed 296 (pb-1) -Preliminary for ICHEP2006

 \rightarrow Good agreement with the Standard Model.