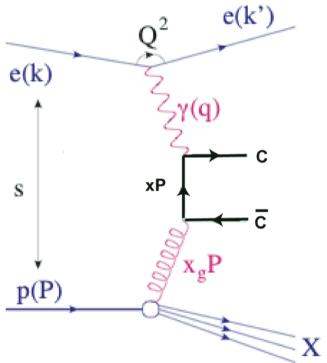


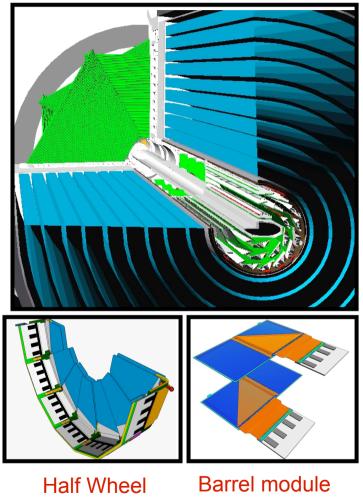
D[±] Cross Sections in DIS using the ZEUS Micro Vertex Detector

Daniel Nicholass UCL On behalf of the ZEUS collaboration


17/4/2007

Overview

- The ZEUS Micro Vertex Detector.
- Displaced secondary vertices and event reconstruction.
- Single differential cross sections.
- Extraction of F_2^{cc} .
- Summary


Motivation

- The leading order process for charm production in DIS at HERA is boson-gluon fusion.
- Charm production in DIS is directly sensitive to the gluon content of the proton.
- Differential cross sections of charm production are a powerful test of perturbative QCD.
- The preliminary results shown here represent a first glance at the potential of the ZEUS Micro Vertex Detector (MVD).
 - First significant heavy flavour results from ZEUS at HERA II.

The ZEUS Micro Vertex Detector

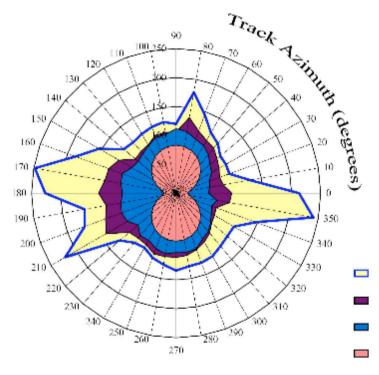
ZEUS tracking

- For HERA II ZEUS was fitted with a silicon micro vertex detector (MVD).
- The MVD consists of forward and barrel regions.
- Barrel:
 - 30 ladders
 - 600 single sided silicon strip sensors
- Forward Wheels:
 - 4 wheels
 - 112 trapezoidal single sided silicon strip sensors
- Back to back sensors give information in (z, rφ) for barrel tracks and (w, u) for forward tracks.

17/4/2007

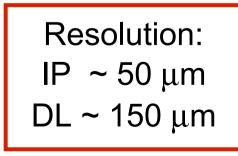
MVD Alignment

- First significant luminosity taken with MVD in 2004.
 - Alignment needed in order to reach full potential.
 - Two stage alignment


Cosmics Alignment

ep Track Alignment

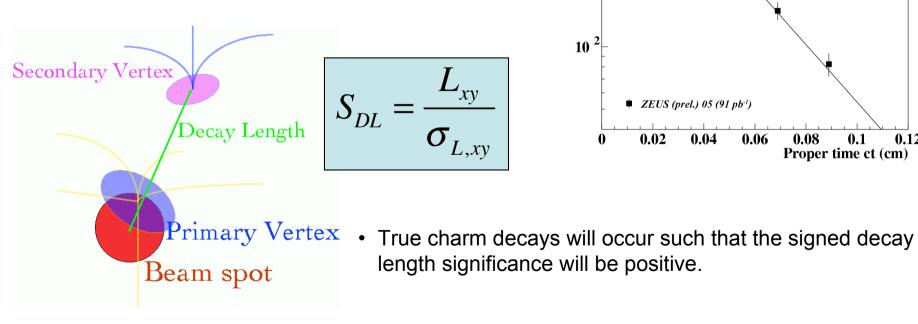
Beam Spot Contribution


DIS '07

MC

1: Alignment with cosmic tracks.

- Iterative χ^2 minimisation procedure.
- 2: Alignment with ep collision tracks.- Least squares simultaneous fit of track and alignment parameters.


17/4/2007

Displaced Secondary Vertices

 $N(D^{+}) / 0.02 \text{ cm}$

10 ³

- Due to their long lifetimes charmed mesons can ٠ have decay vertices displaced from the primary interaction point \rightarrow Need precision tracking (MVD)
- We use the 2D distance from the secondary vertex ٠ to the primary interaction point projected onto the D meson momentum vector divided by the error on this distance (S_{DI}) to reject background.

0.1

0.12

ZEUS

 \mathbf{D}^+


 $\chi^2/n_{\rm DF} = 2.99 / 2$

 $c\tau_{PDG}$ = 312 ±2 µm

cτ=305±26±14 μm

Simulation of secondary Vertices

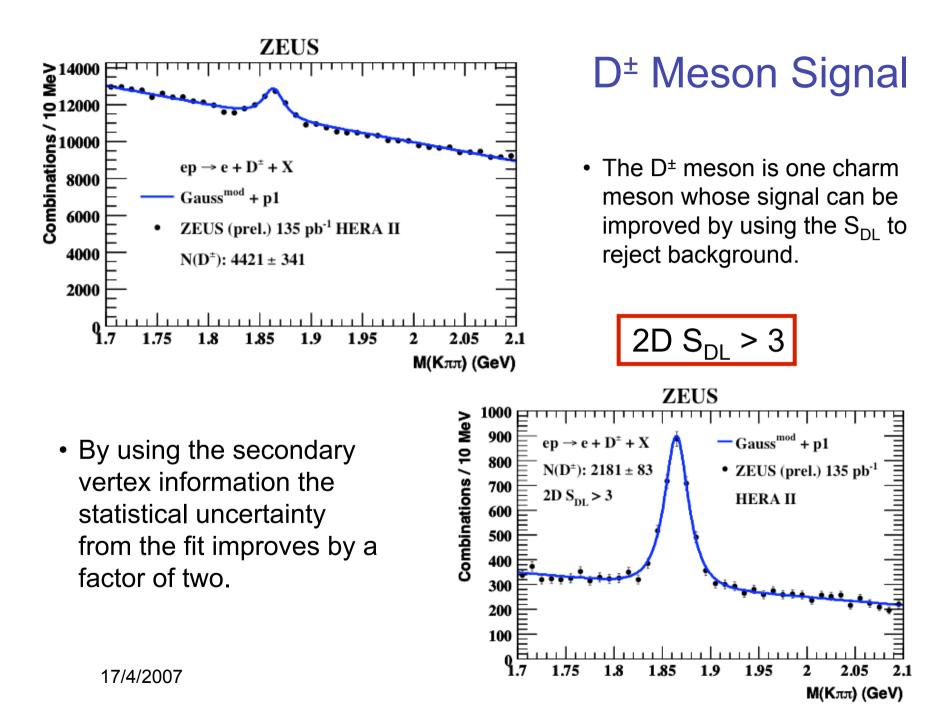
- In order to use the secondary vertex information the data must be well described by the Monte Carlo.
- Slightly poorer description of S_{DL} leads to larger systematic uncertainty later.

D[±] Reconstruction and Selection Cuts

Kinematic Region

- $5 < Q^2 < 1000 \text{ GeV}^2$
- 0.02 < y < 0.7
- $|\eta(D^{\pm})| < 1.6$
- 3 < P_T(D[±]) < 20 GeV

Data Sample

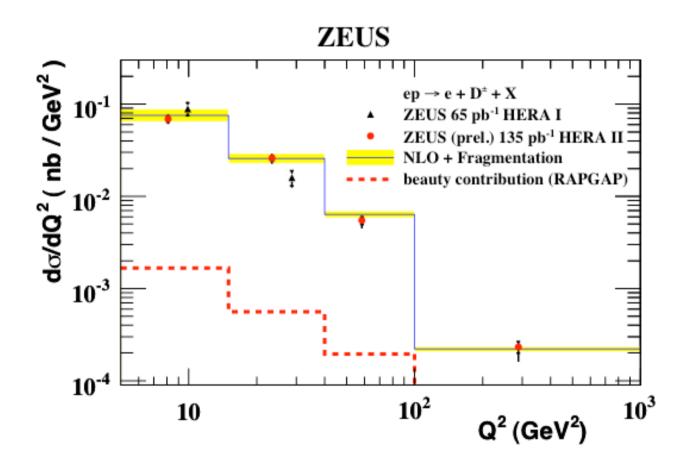

 135 pb⁻¹ HERA II e⁻p data (2004/2005) • D[±] candidates are reconstructed using the decay chain:

$D^{*} \rightarrow K^{\text{-}} \pi^{\text{+}} \pi^{\text{+}} + c.c$

• The kinematic region and selection cuts are influenced primarily by the geometry of the ZEUS detector.

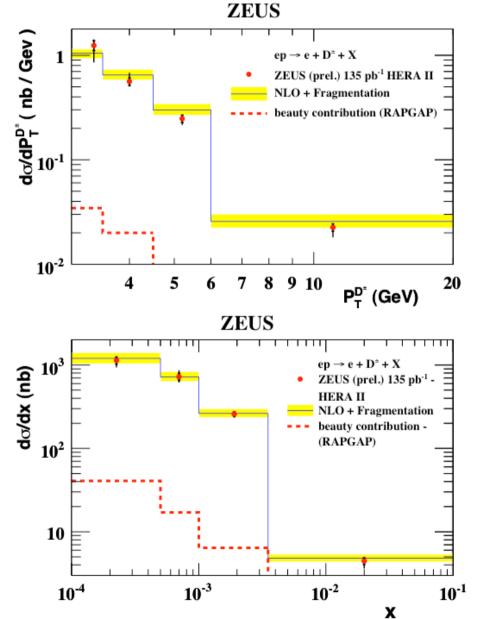
D[±] Selection Cuts

- P_T(K) > 0.7 GeV
- $P_T(\pi,\pi) > 0.5 \text{ GeV}$
- $|\eta(K,\pi,\pi)| < 1.6$
- D* and D_s reflections subtracted.



NLO QCD Prediction

- Theoretical predictions for the differential cross sections are given by the HVQDIS program.
 - A next to leading order Monte Carlo program for the calculation of heavy quark cross sections in deeply inelastic scattering in the Fixed Flavour Number (FFN) scheme. (B.W. Harris & J. Smith).
 - Input parameters and there variations are shown below.
 - Variations are such as to give maximum error on the theory.


Quantity	Value	Variation
Renormalisation & Factorisation scale (μ_R , μ_F)	$\mu_R = \mu_F = \sqrt{Q^2 + 4M_c^2}$	$2\sqrt{Q^2 + 4M_c^2}$ Larger of: $\frac{1}{2}\sqrt{Q^2 + 4M_c^2}$ and $2M_c$
Peterson Parameter (ε)	0.035	± 0.015
Charm Mass (M _c)	1.35 GeV	±0.15 GeV
Input PDF	ZEUS NLO PDF	Upper and lower predictions of ZEUS NLO PDF.

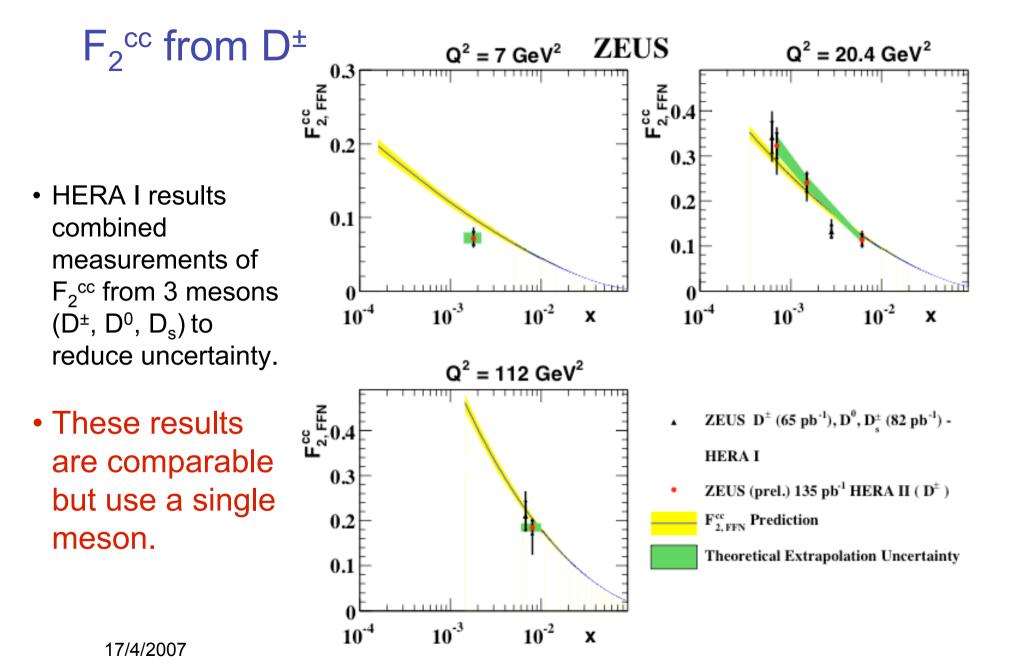
Q² Cross Section

- Results agree with NLO and final HERA I ZEUS results.
- Smaller uncertainty than HERA I measurements.

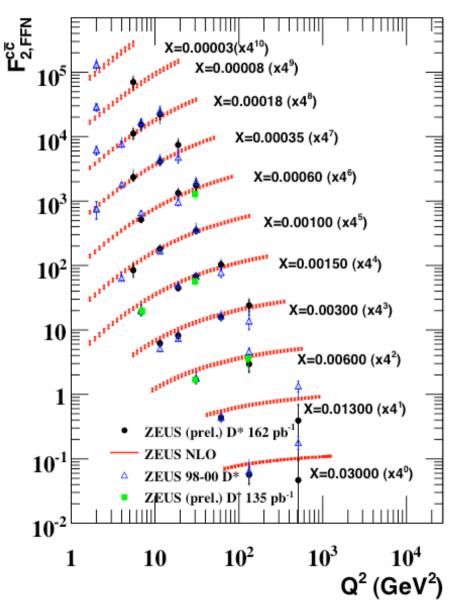
$P_T(D^{\pm})$, $\eta(D^{\pm})$ and x Cross Sections

- ZEUS 1.4 dơ/dη^{D*} (nb) $ep \rightarrow e + D^{\pm} + X$ 1.2 ZEUS (prel.) 135 pb⁻¹ HERA II NLO + Fragmentation beauty contribution (RAPGAP) 0.8 0.6 0.4 0.2 0 -1.5 -0.5 0.5 1.5 -1 0 ηD⁺
 - In all cross sections measured the data is described by the NLO prediction.
 - HERA I points not shown due to incompatible kinematic region.
 12

F_2^{cc} extraction


 Cross sections are measured in bins of (Q², y) and converted to an appropriate (Q², x) value.

$$\frac{d^2 \sigma^{cc}(x,Q^2)}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} [1 + (1-y)^2] F_2^{cc}(x,Q^2)$$


- The beauty prediction is subtracted from each bin.
- The measured cross sections are extrapolated to the full phase space using the following relation:
- The extrapolation is performed at the centre of gravity of the bin.

$$F_{2,meas}^{c\bar{c}}(x_{i,}Q_{i}^{2}) = \frac{\sigma_{2,meas}^{c\bar{c}}(ep \to D^{\pm}X)}{\sigma_{2,theo}^{c\bar{c}}(ep \to D^{\pm}X)} F_{2,theo}^{c\bar{c}}(x_{i,}Q_{i}^{2})$$

- Theoretical cross sections are taken a NLO calculation.
- ZEUS FFN PDFs were used throughout.

ZEUS

F_2^{cc} from D^{\pm}

- Reconstructed D* mesons have previously been used to measure F_2^{cc} .
- Results compare well with recent F₂^{cc} from D* measurements.
- Combination of D* results from HERA I and HERA II is currently a work in progress.

Summary

- Single differential cross sections for the production of D[±] mesons in ep collisions have been measured using 135pb⁻¹ of HERA II ZEUS data.
 - Lifetime tags were used to reduce the combinatorial background and improve the statistical uncertainty.
- The measurements are well described by the NLO prediction.
- F₂^{cc} has been extracted and compared to the final HERA I ZEUS results and the QCD prediction
 - The results agree well with both.
 - Using the new cuts the precision from D^{\pm} alone is as good as that from the previous D^0 , D^{\pm} and D_s combined result.
 - These results can be further improved by combining measurements from several reconstructed mesons.
 - HERA II recently finished high energy running. The full data set (~350pb⁻¹) can be included to further improve the statistical and systematic uncertainty.