

Charm production in diffractive DIS and PHP at ZEUS

Isabell-Alissandra Melzer-Pellmann DESY Hamburg, ZEUS

DIS 2007

April 16th - 20th, 2007

Isabell-A. Melzer-Pellmann

DIS 2007

Outline

- Introduction
- Selection of diffractive events
- Reconstruction of D*
- Diffractive D* in photoproduction ($Q^2 \approx 0$) (new result)
- Comparison to inclusive D*
- Summary and Outlook

Diffractive DIS at HERA

Deep Inelastic Scattering at HERA:

diffraction contributes substantially to the cross section (~ 10% of visible low-x events)

inclusive DIS:Probe partonic structure of the proton $\rightarrow F_2$ inclusive DIS:Probe partonic structure of the proton $\rightarrow F_2$ inclusive DIS:Probe structure of the exchanged color singlet $\rightarrow F_2^D$ inclusive DIS:Probe structure of the exchanged color singlet $\rightarrow F_2^D$ Q²: 4-momentum exchange W: γ p centre of mass energy x: fraction of p momentum carried by struck quark x_{IP}: fraction of p momentum carried by the Pomeron (IP) $x_{IP} = \frac{q \cdot (p - p')}{q \cdot p} \approx \frac{Q^2 + M_X^2}{Q^2 + W^2}$

β: fraction of IP momentum carried by struck quark

$$\beta = \frac{Q^2}{2q \cdot (p-p')} \approx \frac{Q^2}{Q^2 + M_X^2} = \frac{x}{x_{IP}}$$

Inclusive diffraction and factorisation theorem

Diffractive structure function:

$$F_{2}^{D(3)}(\beta,Q^{2},x_{IP}) = \frac{\beta Q^{4}}{4\pi\alpha^{2}(1-y+y^{2}/2)} \cdot \frac{d\sigma^{D}_{ep \to e'Xp'}}{d\beta dQ^{2}dx_{IP}}$$

QCD Factorisation:

 σ^{D} = universal diffractive PDF \otimes hard ME

Factorisation proven for DDIS by Collins.

Rapidity gap due to exchange of colorless object with vacuum quantum numbers

NLO DGLAP FIT \Rightarrow PDF

Diffractive PDFs:

- > assume Regge factorisation
- parametrise flavour singlet and gluons at Q² = 2 or 3 GeV²
- > evolve with NLO DGLAP and fit
- Gluon dominated
- > quark density well constrained
- > larger gluon uncertainty at
 - high z (fractional momentum of parton)

Comparison to Tevatron

Comparison to Tevatron

Suppression due to secondary interactions by add. spectators

Test at HERA with resolved part of photoproduction Kaidalov et al.: rescaling of resolved part by 0.34 (for dijets, less for charm due to enhancement of direct part)

Dijet and charm data:
Hard scale: E_T of jet or charm mass
> tests of universality of PDF's (=QCD factorisation)
> test of DGLAP evolution

Diffractive D*(2010) in γP: diffractive selection

Diffractive D*(2010) in _yP: D* selection

D*(2010)[±]: reconstructed using decay chain:

Diffractive D*(2010) in γP

90% of events produced in direct process
(due to color enhancement),
only 10% resolved (including flavor excitation).
good statistics to check factorisation in direct γP

too poor statistics to check factorisation for resolved γP

Monte Carlo (for corrections): RAPGAP 2.08/18 with H1 FIT2 LO

NLO calculation: FMNR with the following diffractive PDFs: > H1 fit 2006 A and B > ZEUS-LPS + charm fit Photon PDF: GRV-G-HO

Diffractive D*: γP ×_{IP} < 0.01 (new)

Diffractive D*: γP comparison to inclusive D* (new)

Calculation of ratio diffractive ($x_{IP} < 0.035$) /inclusive:

> Perform exactly the same analysis with/without diffractive cuts

- > Use exactly the same program (FMNR) only with different PDFs
- systematic errors in analysis cancel out
- NLO uncertainties cancel out
- more precise test of PDFs

inclusive Monte Carlo (for corrections): HERWIG 6.301

inclusive NLO calculation:
> FMNR with CTEQ5M

Diffractive D*: γP comparison to inclusive D* (new!)

Ratio diffractive/inclusive D* (R_D) for x_{IP} <0.035 :

$$R_D(D^*) = 5.7 \pm 0.5_{(stat)}^{+0.7} \pm 0.3_{(p.d.)} \%$$

Ratio from NLO calculations: H1 2006 Fit A: 6.0% H1 2006 Fit B: 5.7% LPS Fit: 5.8%

> Very good agreement: strongly supports QCD factorisation for direct γP

Diffractive D*: γP and DIS

Conclusions and Outlook

Test of diffractive PDFs with ep charm (D*) data: Data very well described by NLO

- about 6% of D* are produced diffractively for DIS and γP .

- > DIS:
 - NLO QCD calculations with diffr. PDFs describe data
 - QCD factorisation confirmed
- > γ**Ρ**:
 - > NLO QCD calculations with **diffr**. **PDFs describe D* data**
 - strongly supports QCD factorisation for direct γP
 - too large uncertainties to draw conclusion for resolved γP (contribution only about 10 %)

Outlook: need dijet analysis for conclusion on resolved γP rew ZEUS results presented by Y. Yamazaki

BACKUP

Event selection with M_x method

Forward Plug Calorimeter (FPC):
CAL acceptance extended in pseudorapidity from η=4 to η=5
> higher M_x (a factor 1.7) and lower W

p-dissociation events: for M_N > 2.3 GeV energy in FPC > 1GeV recognized and rejected

- flat vs $\ln M_x^2$ for diffractive events
- exponentially falling for decreasing M_x for non-diffractive events

Event selection with LPS

- > t-measurement
- $> x_{IP}$ measurement (access to high x_{IP} range)
- Free of p-dissociation background
- > small acceptance \rightarrow low statistics

