



# Multijets at Low- $x_{Bj}$ in *ep* Collisions at HERA

#### **Results from ZEUS**

Tom Danielson
University of Wisconsin – Madison

DIS 2007: April 18, 2007, Munich



## Testing Parton Evolution: Jets at low $x_{Bi}$



#### **Moving to LHC:**

- Are extracted PDFs usable in the LHC kinematic range  $(1 > x > 10^{-6})$ ?
- Does DGLAP evolution work sufficiently to extrapolate?

#### Study QCD evolution schemes with jets at low $x_{Bi}$ at HERA

- DGLAP: sums over In(Q2) terms (LEPTO, NLOjet++)
  - Strong ordering in  $k_T$ , ordering in x
  - well tested over large range of Q<sup>2</sup>
- BFKL: sums over ln(1/x) terms (~ ARIADNE (CDM))
  - Strong ordering in x, but not ordered in  $k_T$ 
    - More energetic forward jets
    - Jets less correlated in energies, angles
- CCFM:  $k_T$  factorization (CASCADE)
  - Evolution in Q<sup>2</sup>, x
    - Approaches BFKL for low  $x_{Bi}$ , DGLAP for high  $Q^2$
  - angular ordering (instead of  $k_T$  ordering)
  - uses unintegrated parton densities

## Examine multijet correlations in angles, p<sub>T</sub> to search for "non – DGLAP effects"

Compare first to DGLAP-based NLO calculations from NLOjet





#### **Event Selection and Calculations**



#### 1998 – 2000 ZEUS *e*<sup>±</sup>*p* data, 82 pb<sup>-1</sup>

#### Low - x<sub>Bi</sub> DIS selection

$$10^{-4} < x_{Bi} < 10^{-2}$$

$$10 < Q^2 < 100 \, GeV^2$$

#### **Dijet/trijet selection**

$$E_{T,HCM}^{jet1} > 7 \,GeV$$

$$E_{T.HCM}^{jet2(,3)} > 5 \,GeV$$

$$-1 < \eta_{LAB}^{jet1,2(,3)} < 2.5$$

Jets found using k<sub>t</sub> algorithm in inclusive mode

#### **NLO** calculations from **NLO**jet++

• Scales: 
$$\mu_r^2 = \mu_f^2 = \frac{(\overline{E}_{T,HCM}^{jet})^2 + Q^2}{\Delta}$$

- Scales varied simult. by factors 2, ½ for theoretical uncertainty
- PDF set: CTEQ6M
- Hadronization corrections from LEPTO
- For certain jet phase space,  $O(\alpha_s^3)$  calculations possible for dijets



## ZEUS Dijet, Trijets vs. X<sub>Bj</sub>





## Test DGLAP-based calculations from NLOjet for inclusive cross sections, ratios

- Dijet, trijet cross sections both well-described.
- Measure cross section ratios → cancel theoretical uncertainties
  - Ratios also well-described, esp. at low x<sub>Bi</sub>



### ZEUS Dijets, Trijets vs. Δη





#### NLOjet calculations describe $\eta$ correlations

- Description of data independent of  $x_{Bj}$
- Higher-order terms not needed to describe dijet  $\eta$  correlations



### ZEUS Dijet $p_T$ Correlations vs. $x_{Bi}$





•  $|\Sigma \vec{p}_T| = 0$  without gluon radiation

NLOjet calculations at  $O(\alpha_s^2)$  do not describe dijet data at low  $x_{Bi}$ NLOjet calculations at  $O(\alpha_s^3)$  describe data, even at low  $x_{Bi}$ 

- Higher order terms important at low  $x_{Bi}$ 
  - Allows for more gluon emission



### ZEUS Trijet $p_T$ Correlations vs. $x_{Bj}$





• Higher order measurement (O( $\alpha_s^2$ ) at LO)

NLOjet calculations at  $O(\alpha_s^3)$  describe the data

- Better description at higher values of x<sub>Bi</sub>
  - Higher-order NLO calculations not available
  - Effect much less pronounced than for dijets vs.  $O(\alpha_s^2)$  NLOjet calculations



### ZEUS Dijet $p_T$ Correlations vs. $x_{Bj}$





 $|\Delta \vec{p}_T|/(2 E_T^{jet1})$  sensitive to parton evolution, gluon radiation

•  $|\Delta \vec{p_T}|/(2 E_T^{jet1}) = 1$  without gluon radiation

NLOjet calculations at  $O(\alpha_s^2)$  do not describe dijet data at low  $x_{Bj}$  NLOjet calculations at  $O(\alpha_s^3)$  describe data, even at low  $x_{Bj}$ 

- Higher order terms important at low x<sub>Bi</sub>
  - Allows for more gluon emission



## ZEUS Dijet of Correlations vs. XBi





 $|\Delta \phi^*|$  sensitive to parton evolution, gluon radiation

•  $|\Delta \phi^*| = \pi$  without gluon radiation

NLOjet calculations at  $O(\alpha_s^2)$  do not describe dijet data at low  $x_{Bj}$  NLOjet calculations at  $O(\alpha_s^3)$  describe data, even at low  $x_{Bj}$ 

- Higher order terms important at low x<sub>Bi</sub>
  - Allows for more gluon emission





### 





#### Expand study of $|\Delta \phi^*|$ by examining trijets

- Combine first two bins in  $|\Delta \phi^*|$  to reduce stat., systematic errors NLOjet calculations at  $O(\alpha_s^3)$  describe the data
  - Slightly better description at higher values of  $x_{Bi}$
  - Higher-order NLO calculations not available



## ZEUS 2,3-jet Azimuthal Correl. vs. $Q^2$ , $x_{Bi}$





- Measurements sensitive both to angular correlations, forward jets NLOjet calculations at  $O(\alpha_s^3)$  describe dijet, trijet data, even at low  $x_{Bi}$ 
  - Dijets at low  $x_{\rm Bj}$ : O( $\alpha_{\rm s}^3$ ) calcs for dijets ~ 10 x O( $\alpha_{\rm s}^2$ ) calcs



## Summary: Low-x<sub>Bj</sub> Dynamics at HERA



## Dijet, trijet correlations at ZEUS measured at small $x_{\rm Bj}$ (10<sup>-2</sup> < $x_{\rm Bj}$ < 10<sup>-4</sup>)

- Dijet, trijet  $p_T$  and azimuthal correlations most senstive to gluon radiation, parton evolution
  - Higher-order terms important at low  $Q^2$ ,  $x_{Bi}$ 
    - Effects more pronounced for dijets
      - Higher-order calculations up to 10x larger at very small  $x_{\rm Bi}$
  - Correlations well-described by NLOjet calcs.
- Cross sections in  $x_{\text{Bj}}$ , correlations in  $\eta$  well-described by NLOjet calcs.
  - Less sensitive to parton evolution scheme





## Backup Slides



### **Kinematic Coverage of Colliders**







### **ZEUS Dijet and Trijet p<sub>T</sub> Correlations**









## ZEUS Dijet and Trijet Azimuthal Correlations vs. $x_{Bi}$













ZEUS 82 pb<sup>-1</sup> trijets
 — NLOjet: O(α<sub>s</sub><sup>3</sup>) ⊗ C<sub>had</sub> jet energy scale uncertainty
 1/16 < μ<sub>r</sub><sup>2</sup>/(Q<sup>2</sup>+E<sub>τ</sub><sup>2</sup>) < 1</li>