Scaled momentum spectra in the current region of the Breit frame at HERA

B. Brzozowska Warsaw University

on behalf of the ZEUS Collaboration

DIS 2007 workshop April 18, 2007

- Introduction
 - Deep Inelastic Scattering (DIS)
 - Motivation
- 2 Review of data
 - e^+e^- experiment
 - ep experiment
- 3 Analysis
 - DIS selection
 - Comparison with theoretical models
- Summary

Breit frame

The Breit frame is defined by two conditions:

- proton and virtual photon are moving collinearly;
- virtual photon doesn't carry the energy, only momentum.

current region

target region

Brick wall

- before scattering: $xP = (\frac{Q}{2}, 0, 0, \frac{Q}{2})$
- after scattering:

- after scattering:

$$xP = (\frac{Q}{2}, 0, 0, \frac{-Q}{2})$$

DIS variables

- $-Q^2=-q^2$, where q is the 4-momentum of photon
- -xP is 4-momentum of parton from proton

Definition of x_p and ξ

Definitions

$$x_p = rac{2P^{Breit}}{Q}$$
 $\xi = \ln(rac{1}{x_p})$

$$\xi = \ln(\frac{1}{x_p})$$

Momentum space in the Breit frame

• x_p is the particle momentum measured in the Breit frame scaled by $\frac{Q}{2}$ so by max available momentum (effects connected with internal k_T of quark in proton are ignored)

Quantum Chromodynamics

• QCD predictions for x_p distributions are based on: $f(x, Q^2) \otimes \sigma_{NLO} \otimes D(x_p, Q^2)$

Quantum Chromodynamics

- QCD predictions for x_p distributions are based on: $f(x, Q^2) \otimes \sigma_{NLO} \otimes D(x_p, Q^2)$
- $f(x, Q^2)$ proton parton density

Quantum Chromodynamics

- QCD predictions for x_p distributions are based on: $f(x, Q^2) \otimes \sigma_{NLO} \otimes D(x_p, Q^2)$
- $f(x, Q^2)$ proton parton density
- σ_{NLO} hard-scattering cross section

Quantum Chromodynamics

- QCD predictions for x_p distributions are based on: $f(x, Q^2) \otimes \sigma_{NLO} \otimes D(x_p, Q^2)$
- $f(x, Q^2)$ proton parton density
- σ_{NLO} hard-scattering cross section
- $D(x_p, Q^2)$ fragmentation function (FF), which describes probability for a parton to fragment into a hadron carrying a given fraction of the parton's energy

NLO QCD + FF

- Like parton densities, fragmentation functions can be evolved with the hard scale using DGLAP from a starting distribution. Experimental input at low scale is necessary.
- Factorization theorem guarantees that FF are independent of the process.
- α_s can be determined from scaling violations expressed as the Q^2 evolution of the x_p spectra.
 - It was already done in e^+e^- . It was not done at HERA.
 - It is not plagued by uncertainties associated with jet algorithms and PDF uncertainties.
 - It is essential to know FF.

Comparison ep and e^+e^-

Current region in the Breit frame in ep is similar to the one of the hemispheres in e^+e^- .

OPAL Collaboration

Distributions of $\xi_{
ho} = \ln(\frac{1}{\kappa_{
ho}})$

- Distributions for charged particles can be investigated in the wide Q^2 range.
- 14 GeV< E* < 202 GeV describes data from three experiments

5 GeV<
$$E^* = Q <$$
 170 GeV
new ZEUS data
(from one experiment only)

ZEUS Collaboration – published results

Old data

- \blacksquare Luminosity 38 pb⁻¹
- Uncertainty related to the massless assumption in FF:

$$\sim 1/(1 + (m/Qx)^2), \quad 0.1 < m < 1.0$$

Aim of new studies

- Update this result using $\sim 0.5 \text{ fb}^{-1}$
- Concentrate on $Q^2 > 160 \text{ GeV}^2$ region

DIS and particle selection

Experimental data

- collected in 1996 2007 ($\sim 0.5 \; {\rm fb^{-1}}$)
- central tracking detector used, $P_T > 0.15$ GeV, $|\eta| < 1.75$

Monte Carlo

- ARIADNE 4.12 and LEPTO 6.5
- All the particles with a lifetime larger than 0.01 ns (0.3 cm)
- Treated as stable particles: Λ , Σ_u^+ , Σ_d^+ , Ω , K_s

Corrections

Detector corrections

- increasing with Q^2
- very large for soft particles, i.e.for large $ln(\frac{1}{x_p})$ (do not care, no events)

QED corrections

• for $\ln(\frac{1}{x_p})$ and x_p distributions around 1

Sample preparation

This analysis

Samples were prepared using formula: $10 \times 2^n < Q^2 < 10 \times 2^{n+1}$, where n = 0, 1, 2, ...

ZEUS

- Good agreement with the published HERA results.
- Both LEPTO and ARIADNE should be improved esp. at higher Q².

MLLA QCD

- Modified Leading Log Approximation (MLLA):
 - calculates inclusive characteristics up to $lpha_s^{1/2}$
 - contains free parameters: Λ_{eff} and Q_0 cut-off
- According to MLLA predictions function $D(\xi(x_p))$ should be described by Gauss distribution.
- In the past, LEP data have been fitted with 2 free parameters: $\Lambda_{eff} = Q_0$ and K_h .
- From LEP I LEP II fits:
 - $-\Lambda_{\rm eff}=270~{
 m MeV}$
 - $K_h = 1.31$
 - V.Khoze, S.Lupia, W.Ochs (Phys.Lett. B386 (1996) 451-457)

- Parameters used from LEP fits (MLLA + LPHD).
- The limiting spectrum calculations fail to describe the data entire $\frac{Q}{2}$ range.
 - 1) Low energy: migrations of particles to the target region of the Breit frame.
 - 2) High energy: K_h is energy dependent.

MCs fail to describe the data.

NLO predictions

Used FF

- "Kretzer FF" (2000)
 - $-Z^{0}$ -pole data from ALEPH, SLD and low-energy TPC data
 - fitted both identified hadrons (π, K) and inclusive spectra
- "KKP FF" (Kniehl, Kramer, Pötter) (2000)
 - $-Z^0$ -pole data from ALEPH, SLD, TPC + DELPHI, OPAL three-jet data
- "AKK FF" (Albino, Kniehl, Kramer) (2005)
 - update of KKP FF + OPAL results on light-quark tag used to constrain individual light-quark FF $(d, s \rightarrow K^{+-})$

- NLO+FF cannot fully describe the data for the entire x_p range
- Scaling violation larger than predicted

Conclusions

 HERA provides high-precision data FFs with large coverage in energy scale from 2 to 90 GeV

(
$$<$$
 Q^2 $>$ \sim 15 - 26 000 \mbox{GeV}^2).

- MC and analytical MLLA+LPHD QCD calculations cannot reproduce the data in the entire range of x_p and Q^2 .
- NLO+FF predictions do not describe the x_p momentum distributions as function of Q^2 :
 - Description does not improve even at $x_p > 0.3$, where the theory should be reliable.
 - Small differences between different FFs.

Thank you for your attention