Diffractive Open Charm at H1

Paul Thompson - Birmingham University

- Experimental Techniques
- Theoretical Motivation
- Results
- Conclusions/Implications

Presented as preliminary at DIS06.

Accepted by Eur. Phys. J.C (hep-ex/0610076).

Measurement Overview

- Exclusive reconstruction of charmed D* mesons in tracking system for both γp and DIS.
- Inclusive measurement of charm using precise measurement in vertex detector of displaced tracks due to charmed hadron lifetime.
- Inclusive method only for DIS due to trigger.

QCD Factorization

 $\sigma_{\text{meas}} = (\text{universal DPDFs}) \otimes (\text{Hard ME})$

Inclusive Diffraction

Exclusive Final State

Factorization in yp

Photon-hadron

hadron-hadron

Diffractive charm expected to be dominated by direct γ component

2 Gluon Models

Describe diffraction via simplest colourless exchange (2g)

BJKLW

- k_t factorization (CCFM *proton* PDFs)
- For ccg process parameter pt^g ensures calculation is perturbative
- valid for where secondary Reggeon exchanges are suppressed x_{IP} < 0.01

MRW Model

- 'Hybrid' 2g/DPDF approach
- \blacksquare low β resolved IP BGF ($\alpha_{s}{}^{2})$ from DPDF gluon distribution
- High β direct IP contribution

D* Event Selection

<u>Charm</u>

- D* -> K π π_s
- p_t(D*) > 2.0 GeV
- $|\eta(D^*)| < 1.5$

Diffraction

- | t | < 1 GeV²
- M_Y < 1.6 GeV
- x_{IP} < 0.04
 - L ~ 48 pb⁻¹

<u>DIS</u>

- 2 < Q² < 100 GeV²
- 0.05 < y < 0.70

- Q² < 0.01 GeV²
- 0.3 < y < 0.65

D* Cross Sections in DIS

Comparison

- NLO calculation (HVQDIS)
- massive scheme)
- H1 2006 DPDF Fit A,B
- $\mu^2 = 4m_c^2 + Q^2$, $\epsilon = 0.035$
- error band scale, mass, frag. variations ~ 25%

Result

- Overall good description
- QCD Factorization
 valid for charm
 production in DIS

D* Cross Sections in yp

Comparison

- NLO calculation
 (FMNR massive scheme)
- H1 2006 DPDF Fit A,B
- $\mu^2 = 4m_c^2 + p_t^2$

<u>Result</u>

- Overall good description
- QCD Factorization
 valid for charm
 production in γp

Results on yp Factorization

Consider double ratio (less sensitive to theory input):

 $R = \frac{(\sigma_{vis}/NLO)_{\gamma p}}{(\sigma_{vis}/NLO)_{DIS}}$ DIS restricted to same y range as γp

 $R = 1.15 \pm 0.40$ (stat.) ± 0.09 (syst)

No evidence for a suppression of γp but low statistics mean large errors.

D* in DIS ($x_{IP} < 0.01$)

BJKLW 2g model

- CASCADE MC (CCFM, k_t)
- J2003 set 2
- p_t^g > 2 GeV
- cc and ccg contribute

Result

- Overall good
 description by 2g model
- ccg contribution dominates
- DPDF also describes data

Inclusive diff. charm cross section σ^{cc}

 Measure charm contribution to inclusive diffractive cross section

$$\frac{d^3\sigma}{d\beta dQ^2 dx_{IP}} = \frac{4\pi\alpha^2}{\beta Q^4} \left(1 - y + \frac{y^2}{2}\right) \sigma_r^{D(3)} \left(\beta, Q^2, x_{IP}\right)$$

Measure also fraction $f_D^{cc} = \sigma^{cc} / \sigma_D$

- Use info from vertex detector (CST) to determine displacement for all tracks (method used in inclusive F_2^{cc} and F_2^{bb} measurements).
- Reduces extrapolation to full phase space (D* factor ~3) for Q² region where quark jet in CST acceptance.

 $Q^2 > 16 \text{ GeV}^2$, 0.07 < y < 0.7, $M_{\chi} > 6 \text{ GeV}_{11}$

Significance

Negative subtraction

H1 Data

Total MC

- Tracks with highest S₁ and second highest S₂
- Subtract neg from pos values (less sensitive to resolution description)
- Fit using MC templates for uds/c/b.
- b is suppressed, fix to MC prediction. Variation
 by -100 +400% leads to large asymmetric
 systematic error
- Divide into 3 M_x bins

Comparison

MRW2006 NLO QCD
 Fit: massive scheme

Result

- Overall good description by the model
- Resolved pomeron contribution dominates
- direct component contributes at high β

Conclusions

- Final results on HERA-I diffractive open charm from H1.
- D* in γp well described by NLO QCD and DPDFs. No evidence for suppression within statistics.
- D* in DIS well described by NLO QCD and DPDFS, supporting factorization and diffractive gluon PDF.
- Measurement of inclusive diffractive charm contribution using displaced tracks with vertex detector information. Results consistent with cross sections from extrapolated D* and with NLO QCD.
- $\hfill DIS data also well described by pert. 2g model valid at low <math display="inline">x_{IP}$ and 2g/NLO QCD MRW model.