Charm production with jets at H1

Sebastian Schmidt DESY DIS 2007, Munich

- Motivation
- D* tagging
- Models
- Inclusive cross sections (DIS/γp)
- Jet cross sections (DIS/γp)
- Conclusion

Coverage:

DESY-2006-110

DESY-2006-240

Motivation!

 Heavy quarks provide hard scale for pQCD → QCD tests!

 Boson gluon fusion (BGF) dominant production mechanism

 Tagging of charm by D*± mesons

 Complete understanding only if both hard partons are detected

 Jets: experimental signature of the partons

 → Study events with D** meson and jets

D*± tagging

Kinematical range

- **DIS:** $2 \text{ GeV}^2 < Q^2 < 100 \text{ GeV}^2 \text{ und } 0.05 < y < 0.7$
- γ **p**: Q²<0.01 GeV² and 171 < W_{γ p} < 256 GeV
- Selection of D** meson candidates in DIS (γp)
 - Scattered electron in backward calorimeter (e-tagger)
 - Golden decay channel
 - Visible range: p_t(D*)>1,5 GeV (p_t(D*)>2,0 GeV),
 |η(D*)|<1,5
- Signal extraction
 - Fit: Gauß + background
 - $N_{D^*} = 2684 \pm 78 \ (1166 \pm 82) \ D^{*\pm} \ mesons$
 - Data set: e+ 99/2000, $\mathcal{L} = 47 \text{ pb}^{-1} (51.1 \text{ pb}^{-1})$
- Dominating experimental errors
 - Track reconstruction efficiency, signal extraction
 - γp: e-tagger efficiency/ trigger efficieny

 $\eta = -\ln \tan$

Models

photoproduction DIS Kartvelishvili Peterson (value for **NLO DGLAP FNMR HVQDIS** $\alpha = 2.5 - 3.5$ NLO): ε = 0.035massive **GM-VFNS** massive + (only for inclusive D*±) mass less Scale dependent FF ZM-VFNS mass less ZM-VFNS (only for inclusive D*±) (for $D^{*\pm}$ + jets) DGLAP+PS Rapgap **Pythia** Bowler (BELLE) a=0.22,b=0.56Peterson: ε =0.04 **CCFM** CASCADE CASCADE Peterson ε =0.025-0.060 (HERA) 1.5±0.1 GeV 1.5±0.2 GeV m_c variations Added quadratically Maximum of variations $1.5 (\pm 0.5) \times prediction$ beauty 1.0 × prediction Scale variations 0.5 - 2 where appropriate.

Inclusive D*± cross sections DIS

Inclusive D*± cross sections DIS

- First comparison with ZM-VFNS calculations in DIS
- Additional cut
 p_T*> 2.0 GeV
 needed to ensure
 validity of
 calculations

Inclusive D*± cross sections yp

- Slope of p_t(D*) not described
- Discrepancy in forward (η(D*)>0) direction

Inclusive D*± cross sections

- z = inelasticity
- Low z range not described

$$z = \frac{P \cdot p(D^*)}{P \cdot q}$$

Jets

- Different jet selections are applied for DIS and γp
- Jet algorithm: k_t cluster algorithm in the Breit (laboratory) frame with E (pt) recombination scheme
- Relatively low jet energies in charm events
- **DIS selection** (and γp selection for x_{γ})
 - Both hard partons are approximated by jets
 - $E_{T,Breit(Lab)}^{jet 1} > 4 \text{ GeV}, E_{T,Breit(Lab)}^{jet 2} > 3 \text{ GeV}$
 - D*± is normally part of one of the jets

- $E_{T.lab}^{jet 1} > 3 \text{ GeV}$
- D*± is not part of the jet
- Jets in the central calorimeter:

$$-1 (-1.5) < \eta_{lab}^{jets} < 2.5 (1.5)$$

Correlations between jets and partons

15

10

5

p_t (Jet B) [GeV]

 $OJ \leftrightarrow C_2$

- $D^{*\pm}$ meson \leftrightarrow c_1
- Jet with D** meson
 - \rightarrow "D* jet" (DJ)
 - \rightarrow DJ \leftrightarrow C₁
- Leading jet in central detector without D*±
 - → "other jet" (OJ)
 - \rightarrow OJ \leftrightarrow C₂

 $p_t(c_2)$ [GeV]

D*± + jets cross sections DIS

- Description of Q²
 and x distributions
 by CASCADE
 worse than for
 inclusive D*± cross
 sections
- E_T^{max} (transverse energy of leading jet) and M_{jj} (invariant mass of dijet system) well described

D*± + jet cross sections γp

- Jet cross sections better described than inclusive D** cross sections
- High p_t(D*) overestimated by all models
- High p_t(jet) overestimated by CASCADE

$D^{*\pm}$ + jet cross sections (DIS and γp)

x_g und x_y

- **x**_a: part of the proton momentum which participates in the hard interaction
- **x**_v: part of the photon momentum which participates in the hard interaction
- Unambiguous definition only in leading order: "obs"

$$x_g^{obs} = \frac{E_{t,c1}^* \exp(\eta_{c1}^*) + E_{t,c2}^* \exp(\eta_{c2}^*)}{2E_p^*} \quad x_\gamma^{obs} = \frac{E_{t,c1}^* \exp(-\eta_{c1}^*) + E_{t,c2}^* \exp(-\eta_{c2}^*)}{2yE_e^{\prime *}}$$

$$x_{\gamma}^{obs} = \frac{E_{t,c1}^* \exp(-\eta_{c1}^*) + E_{t,c2}^* \exp(-\eta_{c2}^*)}{2yE_e'^*}$$

Usage of jets instead of the partons

$$x_{\gamma}^{obs} = \frac{\sum_{jet1} (E - p_z)^* + \sum_{jet2} (E - p_z)^*}{\sum_{had} (E - p_z)^*}$$

- → Access **gluon density** in the proton
- → Access resolved processes for the production of charm

x_{γ} (DIS and γp)

x_g (DIS)

- x_g described well for all Q² bins
- Due to size of experimental and theoretical errors not (yet!) possible to separate between current PDFs
- As example: CTEQ5F3 vs. MRST2004F3 and set-A0 vs. J2003 set-1
- HERA II ?!

Conclusions

- D** meson production cross sections measured by H1 for HERA I data sets in DIS and photoproduction
- Comparisons with different theoretical approaches:
 CASCADE, HVQDIS/FFNS and (where available)
 ZM-VFNS and GM-VFNS
- Small deviations between data and theory for DIS, larger discrepancies for photoproduction
- Jets associated with D** mesons have been studied
- In general good description by theory (but x_{γ} , $\Delta \phi$!)
- HERA II data still to come!