Isolated Photons in DIS

Katharina Müller, University of Zurich DIS 2007, Munich, April 17

Outline

- Motivation
- Isolated Photon Production in DIS
- Event Selection
- Signal/Background Separation
- Results
- Summary

Motivation

→ First measurement of Isolated Photons in DIS at H1

Extend phasespace of former measurement by ZEUS 04 (hep-ex/0402019) in Q², transverse energy E_T^γ and pseudorapidity η^γ more than double the luminosity 10x higher total cross section expectation

- → Understanding of isolated photon production essential for searches at LHC. Low Higgs masses: H→γγ best discovery channel
- Recent LO calculation available for inclusive and exclusive measurement

2

Isolated Photon Production in DIS

At Leading Order($\alpha^3 \alpha_s^0$) at HERA in DIS Q²= -(k-k')²>4 GeV²

including quark-to-photon fragmentation

• Radiation from the electron (LL)

- Interference (LQ), small (3%)
- LO calculation by Gehrmann et al. (hep-ph/0601073 and hep-ph/0604030) corrected to hadron level (10-20%)
- MC PYTHIA radiation from Quark

RAPGAP radiation from electron

Signature:

e'(k')

e(k)

- Scattered Electron
- Isolated photon
- Hadronic activity (Vertex)
- Separation from background (neutral hadrons)
 Shower shape analysis

Isolated Photons in H1

Selection

- 1) Scattered Electron in SpaCal
 - E'>10 GeV
 - θ_e<177°
- 2) Isolated Photon Candidate in LAr
 - compact elmgn. Cluster
 - $3 < \dot{E}_{T}^{\gamma} < 10 \text{ GeV} 1.2 < \eta^{\gamma} < 1.8$
 - no track pointing to cluster (20cm)
 - Isolation $z = E_t^{\gamma/E_T^{jet}} > 0.9$
- 3) Phasespace:
 - 4< Q² < 150 GeV²
 - y> 0.05

•
$$W_{\chi}^{2} = (p_{e} + p_{p} - p_{e}' - p_{\gamma})^{2} > 2500 \text{ GeV}^{2}$$

4) Central Track (Vertex)

5) Hadronic Jets

• k_{T} algorithm R_{0} =1

•
$$P_t^{jet} > 2.5 \text{ GeV}, -1.0 < \eta^{Jet} < 2.1$$

Data 99-05 (HERA I+II) Luminosity 226.2 pb ⁻¹ 14 670 events, 6 495 with an additional jet, photon signal extracted with a shower shape analysis

4

Photon Candidates - Hadronic Jets

Background: multi-photon clusters

Signal: single photons

Background: multi-photon clusters

Shower Shape Variables

Photon Signal Extraction

- Shower Shape Analysis in bins of $\, E_{_{\! T}}^{\ \gamma} \!, \,\, \eta^{\gamma}$ and Q^2
- Discriminator formed (likelihood approach) with 6 shower shape variables
- Probability densities functions defined by MC events with Single Particles (high statistics)
 Signal: photons, Background: mix of neutral hadrons π⁰, η, η', ρ, K*, K_s, K₁, Ω, (anti)neutrons

- Extract photon content in bins of $E_{_T}^{~\nu}$, η^{ν} and Q^2 by χ^2 fit to discriminator

8

Control of cluster shapes

Dominant systematic error from description of cluster shapes studied using Bethe Heitler and Deeply Virtual Compton Scattering events $ep \rightarrow ep\gamma$

- Bethe Heitler: Electron in LAr, photon in SpaCal
- DVCS: Electron in SpaCal, photon in LAr
- Energy range:comparable
- Compare cluster shapes with MC electrons and photons

uncertainty increasing with E_τ and η

→ 11%-25% effect on cross section measurement

R

Cross sections

Inclusive Isolated Photons

Comparison to LO calculation: LO 44% too low

Radiation from electron contributes only in first bin in η^{γ}

MC prediction very similar to LO calculation

Inclusive Isolated Photons

Q²>40 GeV²

Total inclusive cross section $Q^2>40 \text{ GeV}^2$:

 14.0 ± 0.8 (stat) $^{+2.1}_{-2.1}$ (syst) pb (LO 10.3 pb MC 8.8 pb)

- LO and MC predictions agree better undershoot 23% (35%)
- Shapes well described
- Relative contribution of radiation from quark smaller than at small Q²
- Radiation from electron negligible in forward region ($\eta^{\gamma} > 0$)

Photon plus (no-)Jets

Photon plus no-jets (no hadronic jet E₁^{Jet}>2.5 GeV -1.0 <η^{Jet} <2.1): LL suppressed

Katharina Müller - University of Zurich, 17/04/07 14

Conclusions

- First measurement of isolated photons in DIS by H1 (HERA I+II), luminosity 226 pb⁻¹
- Two contributions: radiation from quark and from electron

Different η^{γ} -dependence

Radiation from electron small for $\eta^{\gamma} > -0.6$

• LO and MC significantly lower than the data (roughly 50%)

Most prominent at low Q²

High Q²: LO and MC lower, but only by 30%, shapes described

• Exclusive measurement: photon plus no-jets, photon plus jets

Underestimated by LO calculation and MC

- Photon plus jets cross section roughly twice the photon plus no-jets cross section
- Photon plus no-jets: radiation from electron suppressed (W cut)

Need for NLO calculation