DIS07

XV International Workshop on Deep-Inelastic Scattering and Related Subjects

April 16 - 20, 2007

Munich, Germany

Summary of α_s determinations at ZEUS

Claudia Glasman Universidad Autónoma de Madrid

ZEUS Collab.

The method to determine α_s from jet observables

- The procedure to determine α_s from jet observables used by ZEUS is based on the α_s dependence of the pQCD calculations, taking into account the correlation with the PDFs:
 - perform NLO calculations using different sets of proton PDFs
 - use as input in each calculation the value of $lpha_s(M_Z)$ assumed in each PDF set
 - parametrise the α_s dependence of the observable:

$$A(lpha_s(M_Z)) = A_i^i \ lpha_s(M_Z) + A_2^i \ lpha_s(M_Z)^2$$

— determine $lpha_s(M_Z)$ from the measured value using the NLO parametrisation

• This procedure handles correctly the complete α_s -dependence of the NLO calculations (explicit dependence in the partonic cross section and implicit dependence from the PDFs) in the fit, while preserving the correlation between α_s and the PDFs

$\alpha_s(M_Z)$ from jet cross sections

Ratio of dijet to total cross sections in NC DIS

ullet From the measured $R_{2+1}(Q^2)$ for $Q^2>470~{
m GeV}^2$ a value of $\alpha_s(M_Z)$ has been extracted:

$$\alpha_s(M_Z) = 0.1166 \pm 0.0019 \text{ (stat.)} ^{+0.0024}_{-0.0033} \text{ (exp.)} ^{+0.0057}_{-0.0044} \text{ (th.)}$$

- Experimental uncertainties:
 - → dominated by jet energy scale uncertainty
- Theoretical uncertainties:
 - \rightarrow terms beyond NLO: $\Delta \alpha_s/\alpha_s = {}^{+4.7}_{-3.6}\%$
 - \rightarrow uncertainties from the pPDFs: $\Delta \alpha_s/\alpha_s = ^{+1.0}_{-0.9}\%$
 - \rightarrow hadronisation corrections: $\Delta \alpha_s/\alpha_s = \pm 0.4\%$
- → Need improvement in theoretical calculations to obtain a more precise determination of $lpha_s(M_Z)$ from dijet cross sections in the Breit frame at high Q^2

$\alpha_s(M_Z)$ from jet cross sections

Inclusive-jet cross section in photoproduction

ullet From the measured $d\sigma/dE_T^{
m jet}$ for $E_T^{
m jet}>17$ GeV $^{
m boldet}_2$ 10 2 a value of $\alpha_s(M_Z)$ has been extracted:

$$\alpha_s(M_Z) = 0.1224 \pm 0.0001 \text{ (stat.)} ^{+0.0022}_{-0.0019} \text{ (exp.)} ^{+0.0054}_{-0.0042} \text{ (th.)}$$

- Experimental uncertainties:
 - → dominated by jet energy scale uncertainty:

$$\Delta \alpha_s/\alpha_s = \pm 1.5\%$$

- Theoretical uncertainties:
 - \rightarrow terms beyond NLO: $\Delta \alpha_s/\alpha_s = ^{+4.2}_{-3.3} \%$
 - ightarrow uncertainties from pPDFs: $\Delta \alpha_s/\alpha_s = \pm 0.9\%$
 - ightarrow hadronisation corrections: $\Delta \alpha_s/\alpha_s = +0.8\%$
 - ightarrow uncertainties from γ PDFs: $\Delta \alpha_s/\alpha_s = +0.7\%$

→ Need improvement in theoretical calculations to obtain a more precise determination of $lpha_s(M_Z)$ from inclusive jet cross sections in photoproduction ZEUS Collab, PLB 560 (2003) 7

ZEUS

Test of the energy-scale dependence of α_s

Inclusive-jet cross section in photoproduction

• The QCD prediction for the energy-scale dependence of α_s was tested by determining $\alpha_s(E_T^{
m jet})$ from the measured $d\sigma/dE_T^{
m jet}$ in γp at different $E_T^{
m jet}$ values:

ZEUS Collab, PLB 560 (2003) 7

o The results are in good agreement with the predicted running of $lpha_s$ over a large range in $E_T^{
m jet}$

ZEUS

$lpha_s(M_Z)$ from jet cross sections

Ratio of trijet to dijet cross sections in NC DIS

ullet From the measured $d\sigma/dQ_{
m trijet}^2/d\sigma/dQ_{
m dijet}^2$ for $10 < Q^2 < 5000$ GeV 2 a value of $lpha_s(M_Z)$ has been extracted:

 $\alpha_s(M_Z) = 0.1179 \pm 0.0013 \text{ (stat.)} ^{+0.0028}_{-0.0046}$

- Experimental uncertainties:
 - → dominated by jet energy scale uncertainty:

$$\Delta lpha_s/lpha_s={}^{+2.0}_{-2.5}\%$$

- Theoretical uncertainties:
 - ightarrow terms beyond NLO: $\Delta \alpha_s/\alpha_s = ^{+5.0}_{-3.5}\%$
 - \rightarrow uncertainties from pPDFs: $\Delta \alpha_s/\alpha_s = {}^{+1.5}_{-2.0}\%$
 - ightarrow hadronisation corrections: $\Delta \alpha_s/\alpha_s=\pm 2\%$
- ightarrow Need improvement in theoretical calculations to obtain a more precise determination of $lpha_s(M_Z)$ from multijet cross sections in NC DIS

ZEUS Collab, EPJ C 44 (2005) 183

$\alpha_s(M_Z)$ from internal structure of jets

Integrated jet shape in NC DIS

ullet From the measured $\langle \psi(r=0.5)
angle$ for $E_T^{
m jet}>21$ GeV a value of $\alpha_s(M_Z)$ has been extracted:

$$\alpha_s(M_Z) = 0.1176 \pm 0.0009 \text{ (stat.)} ^{+0.0009}_{-0.0026} \text{ (exp.)} ^{+0.0091}_{-0.0072} \text{ (th.)}$$

- Experimental uncertainties:
 - → dominated by jet energy scale uncertainty

$$\Delta lpha_s/lpha_s={}^{+0.8}_{-2.2}\%$$

- Theoretical uncertainties:
 - \rightarrow terms beyond NLO: $\Delta \alpha_s/\alpha_s = ^{+7.6}_{-6.0}\%$
 - → uncertainties from pPDFs: negligible
 - \rightarrow hadronisation corrections: $\Delta \alpha_s/\alpha_s = \pm 1.5\%$

→ Need improvement in theoretical calculations to obtain a more precise determination of $\alpha_s(M_Z)$ from jet shape in NC DIS

ZEUS Collab, NPB 700 (2004) 3

ZEUS

$lpha_s(M_Z)$ from jet cross sections

Inclusive-jet cross section in NC DIS

• From the measured $d\sigma/dQ^2$ for $Q^2>500$ GeV 2 and R=1 a value of $\alpha_s(M_Z)$ has been extracted:

$$lpha_s(M_Z) = 0.1207 \pm 0.0014 \; ({
m stat.}) \; {}^{+0.0035}_{-0.0033} \; ({
m exp.}) \ {}^{+0.0022}_{-0.0023} \; ({
m th.})$$

- Experimental uncertainties:
 - → dominated by jet energy scale uncertainty:

$$\Delta \alpha_s/\alpha_s=\pm 2\%$$

- Theoretical uncertainties:
 - \rightarrow terms beyond NLO: $\Delta \alpha_s/\alpha_s = \pm 1.5\%$
 - ightarrow uncertainties from pPDFs: $\Delta \alpha_s/\alpha_s = \pm 0.7\%$
 - ightarrow hadronisation corrections: $\Delta \alpha_s/\alpha_s = \pm 0.8\%$

ZEUS Collab, DESY-06-241

$\alpha_s(M_Z)$ from structure functions

0.125

 $\alpha_{\rm s}(M_{\rm z})$

NLO QCD fit to inclusive and jet data

total χ^2 - χ^2_{min}

10

- \bullet Simultaneous determination of the proton PDFs and $\alpha_s(M_Z)$
- Jet cross sections are directly sensitive to $\alpha_s(M_Z)$ via $\gamma^{(*)}g \to q \bar{q}$ (coupled to gluon density) and via $\gamma^{(*)}q \to qg$ (NOT coupled to gluon density)
- ightarrow The inclusion of the jet cross sections allows an extraction of $lpha_s(M_Z)$ from structure functions that is NOT strongly correlated to the gluon density
- Determination of $lpha_s(M_Z)$ from the ZEUS-JETS- $lpha_s$ fit: $lpha_s(M_Z)=0.1183\pm0.0016~({
 m norm.})\pm0.0008~({
 m model})$

$$ightarrow \Delta lpha_s(M_Z) = \pm 0.0050$$

$$\Rightarrow$$
 Precise determination $|lpha_s(M_Z)=0.1183\pm0.0058|$ from ZEUS data alone

ZEUS

with jet datawithout jet data

world average (Bethke 2004)

ZEUS Collab, Eur Phys Jour C 42 (2005) 1

Comparison of $\alpha_s(M_Z)$ determinations at ZEUS

ullet Determinations of $lpha_s(M_Z)$ by ZEUS from jet cross sections, internal structure of jets and NLO QCD fit of structure functions:

Process	Value	Stat.	Experim.	Theory	Total	(%)]
Inc. Jet NC DIS	0.1207	0.0014	$+0.0035 \\ -0.0033$	$+0.0022 \\ -0.0023$	$\begin{array}{r} +0.0044 \\ -0.0043 \end{array}$	~ 3.6	*
Inc. Jet γp	0.1224	0.0001	$+0.0022 \\ -0.0019$	$+0.0054 \\ -0.0042$	$+0.0058 \\ -0.0046$	~ 4	*
NLO QCD Fit	0.1183	\rightarrow	$+0.0028 \\ -0.0028$	+0.0051 -0.0051	$+0.0058 \\ -0.0058$	~ 5	-
Dijet NC DIS	0.1166	0.0019	$+0.00\overline{24} \\ -0.0033$	$+0.0057 \\ -0.0044$	$+0.0065 \\ -0.0058$	~ 5	*
3/2 Jet NC DIS	0.1179	0.0013	$+0.0028 \\ -0.0046$	$\begin{array}{r} +0.0064 \\ -0.0046 \end{array}$	$\begin{array}{r r} +0.0071 \\ -0.0066 \end{array}$	~6	*
Jet Shape NC DIS	0.1176	0.0009	$+0.0009 \\ -0.0026$	$+0.0091 \\ -0.0072$	$+0.0092 \\ -0.0077$	~ 7	*
Subjet NC DIS	0.1187	0.0017	$+0.0024 \\ -0.0009$	$+0.0093 \\ -0.0076$	$+0.0097 \\ -0.0078$	~8	
Subjet CC DIS	0.1202	0.0052	$+0.0060 \\ -0.0019$	$+0.0065 \\ -0.0053$	$+0.0103 \\ -0.0077$	~8	

 \rightarrow experimental uncertainties: $\sim 3\%$

ightarrow theoretical uncertainties: $\sim 4\%$ (jet cross sections and NLO QCD fit)

 $\sim 8\%$ (internal structure of jets)

Summary of determinations of $lpha_s(M_Z)$ at ZEUS

All the measurements are consistent to each other and to the world average

New determination consistent with HERA average

Averaging the determinations of $lpha_s(M_Z)$ at HERA

- A proper average requires the inclusion of correlations among the different determinations:
 - **→** Experimental uncertainties:
 - jet energy scale (highly correlated among the determinations from each experiment)
 - → Theoretical uncertainties:
 - proton PDFs (correlated)
 - hadronisation corrections (partially correlated)
 - terms beyond NLO (correlated?)
- → Since the theoretical uncertainties are dominant and the biggest contribution arises from the terms beyond NLO
 - ightharpoonup the difficulty of averaging the determinations of $lpha_s(M_Z)$ at HERA lies on the treatment of the theoretical uncertainties arising from terms beyond NLO

Average of $\alpha_s(M_Z)$ from HERA I measurements

- Several methods have been used to obtain an average of $\alpha_s(M_Z)$ at HERA:
 - → Naive method: $\overline{\alpha_s(M_Z)} = 0.1188 \pm 0.0020$
 - \rightarrow Schmelling's method: $\overline{\alpha_s(M_Z)} = 0.1192 \pm 0.0047$
 - → Correlated-sources method:

$$\overline{\alpha_s(M_Z)} = 0.1186 \pm 0.0011 \text{ (exp.)} \pm 0.0050 \text{ (th.)}$$

$$= 0.1186 \pm 0.0051$$

- The last two methods give comparable uncertainties → confidence on the result
- The last method is considered to be the most realistic (though conservative) since the known correlations among determinations from the same experiment were taken explicitly into account
- The HERA average is then:

$$\rightarrow \overline{\alpha_s(M_Z)} = 0.1186 \pm 0.0011 \text{ (exp.)} \pm 0.0050 \text{ (th.)}$$

experimental uncertainty: $\sim 0.9\%$; theoretical uncertainty: $\sim 4\%$

inclusive jet γρ

Energy-scale dependence of α_s

• The QCD prediction for the energy-scale dependence of α_s has been tested by determining α_s from the measured differential cross sections at different μ :

ZEUS Collab, PLB 560 (2003) 7 PLB 547 (2002) 164 PLB 507 (2001) 70 DESY-06-241

ightharpoonup The determinations are consistent with the running of $lpha_s$ as predicted by QCD over a large range in $E_T^{
m jet}$

Energy-scale dependence of α_s

• Determinations at similar μ were combined using the correlated-sources method:

ightarrow Observation of the running of $lpha_s$ from HERA jet data

Back-up slides

Theoretical uncertainties on $lpha_s(M_Z)$

- ullet New method of calculating uncertainty due to higher orders on $lpha_s(M_Z)$:
 - → method proposed by Jones, Ford, Salam, Stenzel and Wicke (JHEP 122003007)

 Old method of determining theoretical uncertainties was subject to fluctuations in the data

 New method minimizes dependence on data

Theoretical uncertainties on $lpha_s(M_Z)$

• PDF uncertainty of inclusive-jet cross section as a function of Q^2 for various PDF sets:

- **← PDF set ZEUS2002-RT (DESY 02-105)**
- ← ZEUS and fixed-target data
- ← uncertainties under control

Theoretical uncertainties on $\overline{lpha_s(M_Z)}$

• PDF uncertainty of inclusive-jet cross section as a function of Q^2 for various PDF sets:

$$\textbf{ZEUS2002-RT} \rightarrow \pm 0.7\%$$

MRST-2001
$$\rightarrow \pm 0.7\%$$

CTEQ6
$$\rightarrow \pm 1.6\%$$