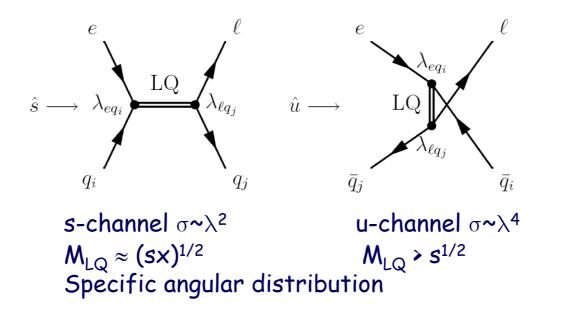
Search for Leptoquarks and LFV at the H1 Experiment

Ana Dubak

on behalf of the

H1 Collaboration


- ·Leptoquarks at HERA
- Search for first generation LQs
- Search for Lepton Flavour Violation (LFV)
- •Summary

Leptoquarks and LFV at HERA

<u>Leptoquarks</u> colour triplet bosons fractional charge both lepton and baryon number Parameters

mass coupling

quantum numbers

Lepton Flavour Conservation (LFC) decays: LQ -> eq, vq (BRW) Lepton Flavour Violation (LFV) decays: LQ -> µq, LQ -> τq

Buchmüller-Rückl-Wyler-Model

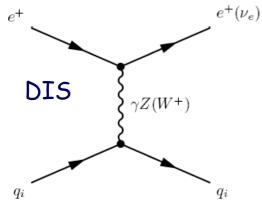
-						_
F = 2	Prod./Decay	β_{e}	F = 0	Prod./Decay	β_e	
	Sc	alar Lep	otoquarks			
$S_{0,L}$	$e_L^- u_L \rightarrow e^- u$	1/2	$S_{1/2,L}$	$e_R^+ u_R \to e^+ u$	1	
	ightarrow u d	1/2				
$S_{0,R}$	$e_R^- u_R \to e^- u$	1	$S_{1/2,R}$	$e_L^+ u_L \rightarrow e^+ u$	1	
$\tilde{S}_{0,R}$	$e_R^- d_R \to e^- d$	1		$e_L^+ d_L ightarrow e^+ d$	1	
$S_{1,L}$	$e_L^- d_L \to e^- d$	1	$\tilde{S}_{1/2,L}$	$e^+_R d_R ightarrow e^+ d$	1	
	$e_L^- u_L \rightarrow e^- u$	1/2				
	ightarrow u d	1/2				
	Ve	ctor Le	otoquarks			
$V_{1/2,R}$	$e_R^- d_L \to e^- d$	1	$V_{0,R}$	$e^+_L d_R ightarrow e^+ d$	1	
	$e_R^- u_L \rightarrow e^- u$	1	$V_{0,L}$	$e^+_R d_L ightarrow e^+ d$	1/2	
				$\rightarrow \overline{\nu} u$	1/2	
$V_{1/2,L}$	$e_L^- d_R \to e^- d$	1	$ ilde{V}_{0,R}$	$e_L^+ u_R \to e^+ u$	1	
$\tilde{V}_{1/2,L}$	$e_L^- u_R \rightarrow e^- u$	1	$V_{1,L}$	$e^+_R u_L \to e^+ u$	1	
				$e^+_R d_L ightarrow e^+ d$	1/2	
				$\rightarrow \overline{\nu} u$	1/2	
						•

14 first generation LQs

•classied by Spin, Weak Isospin, e⁻ chirality

•Fermion number F=L+3BF = 2 (e-q) or F = 0 (e+q)

•all can decay into e±q only 4 of them can also decay into vq

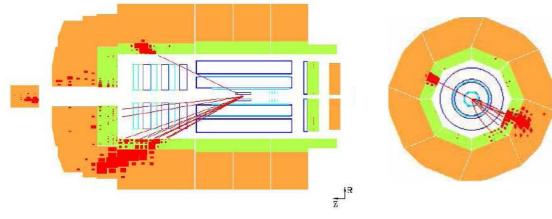

•branching ratio fixed to be β_e = 1 or 0.5

•two free parameters: - LQ mass M,

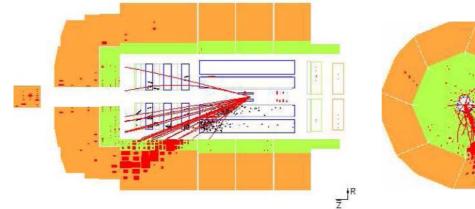
- Yukawa coupling

New Leptoquark Searches

- Search for LQs with LQ -> eq, vq
 - full HERA I data published in '05 hep-ex/0506044v1
 - new e⁻p polarised data from HERA II: $L = 92 \text{ pb}^{-1}$
- Search for LFV via LQ -> μq, LQ -> τq
 - e⁺p data from 1999-00: L = 65.5 pb⁻¹
 - e⁻p data from 1998-99: L = 13.7 pb⁻¹

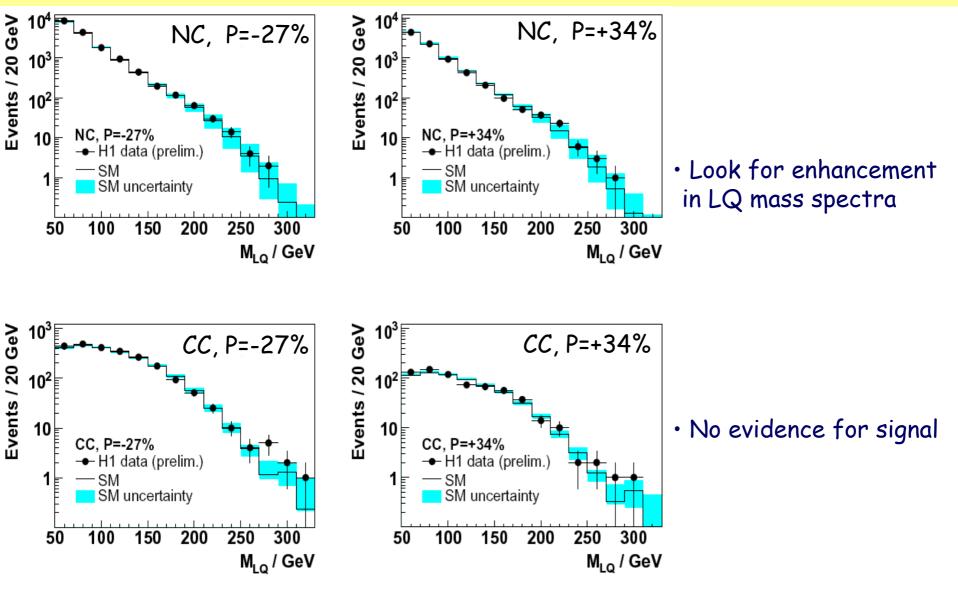

Search for LQ \rightarrow eq,vq

Standard NC/CC DIS selection cuts


Q² > 500 GeV² 0.1 < y < 0.9

NC: $P_{Te} > 11 \text{ GeV}$

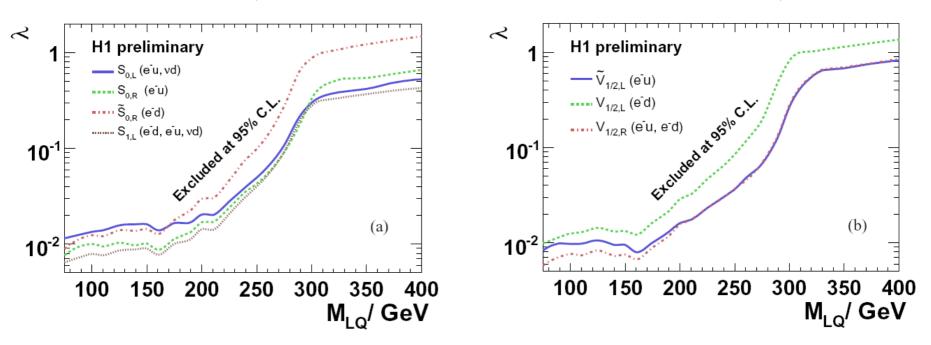
 $LQ \rightarrow eq$ signature as NC DIS $eq \rightarrow eX$


 $\textbf{LQ} \rightarrow v \textbf{q}$ signature as CC DIS $\textbf{eq} \rightarrow v \textbf{X}$

CC: P_{Tmiss} > 12 GeV

DIS 2007, 16.-20.04.2007, Munich, Germany

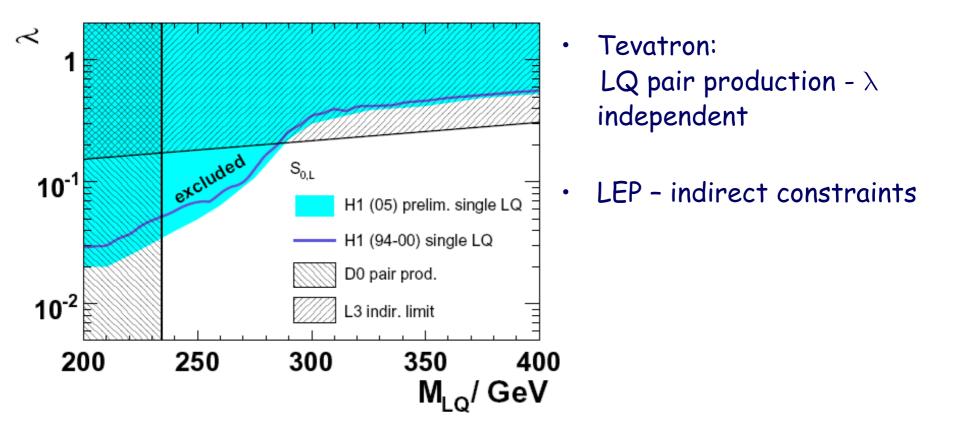
Search for LQ \rightarrow eq,vq



DIS 2007, 16.-20.04.2007, Munich, Germany

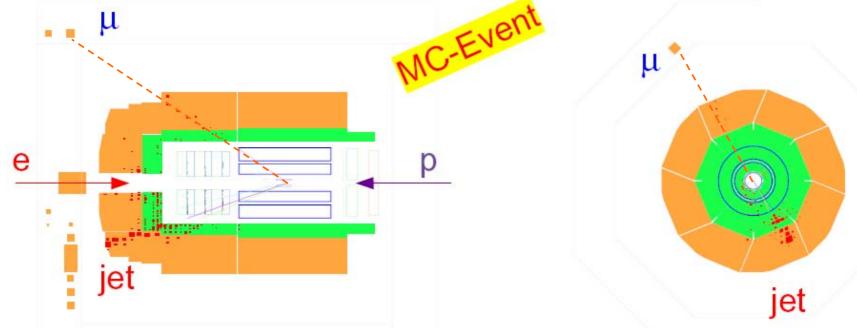
Exclusion Limits for LQs with F=2

Scalar LQs


Vector LQs

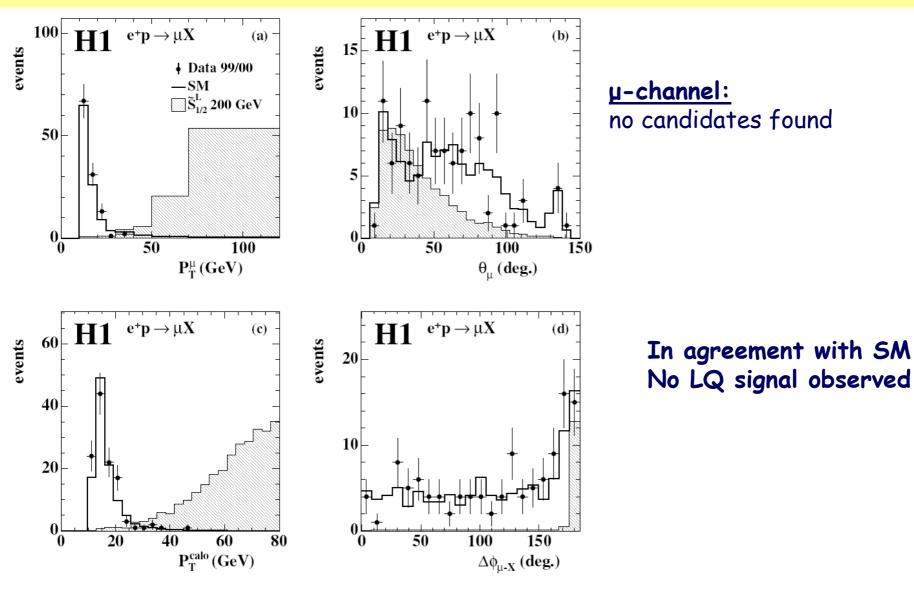
• strongest constraint for resonant production, $M_{LQ} = (s_{ep}x)^{1/2}$

• at λ = (4 π a)^{1/2} = 0.3 lower limits on M_{LQ} : > 276 - 304 GeV

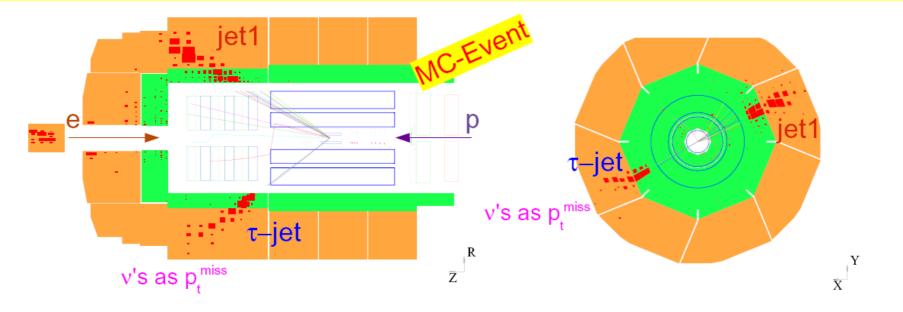

Comparison with LEP, Tevatron, HERA I

Increased e⁻p statistics (HERA II) \Rightarrow improvement in the resonant region

LFV: $ep \rightarrow \mu q$


Signature: isolated high p_T muon (no electron) back-to-back to high p_T jet

Main selection criteria

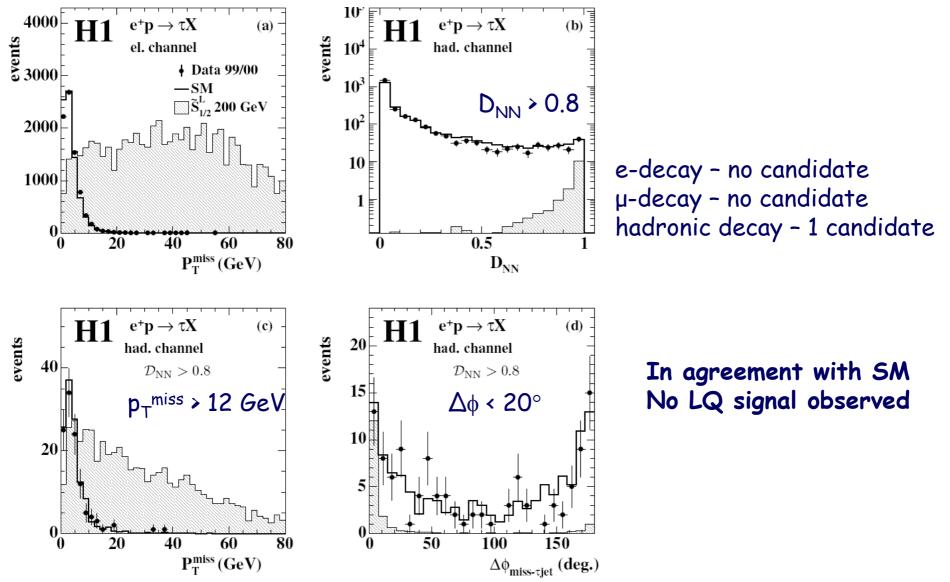

One muon with Muon escapes calorimeter Back to back topology p_T > 10 GeV P_T^{calo} > 25 GeV $\Delta \phi_{\mu-X}$ > 170°

Control distributions of the µX sample

DIS 2007, 16.-20.04.2007, Munich, Germany

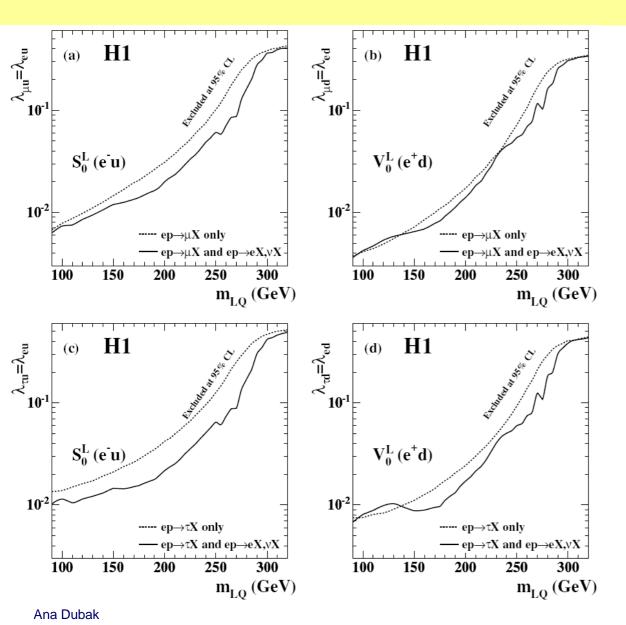
LFV: ep $\rightarrow \tau q$

Main selection criteria

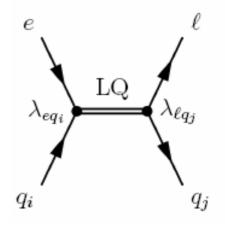

Electronic τ decayMuoOne jet with $p_T^{jet} > 25 \text{ GeV}$ As

Electron with $p_T^e > 10 \text{ GeV}$

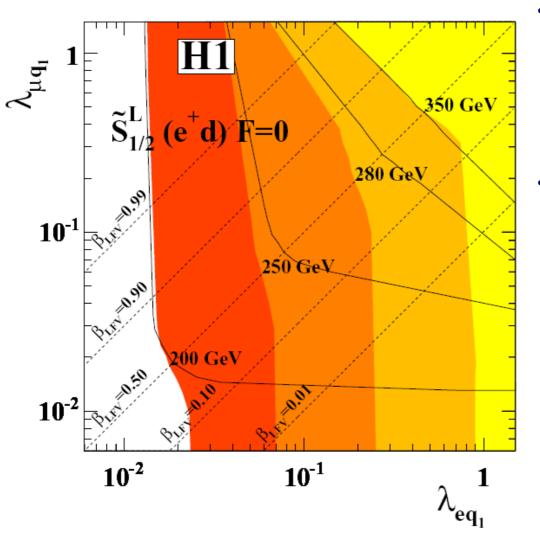
Q² > 1000 GeV² Ana Dubak


Nuonic $ au$ decay	Hadronic τ decay
As for ep $ ightarrow$ µq	One jet (jet1) with p_T^{jet1} > 20 GeV
	One jet (jet1) with $p_T^{jet1} > 20 \text{ GeV}$ Pencil like jet (jet2) with low track multiplicity and $p_T^{jet2} > 15 \text{ GeV}$ NN for identification of jet from τ
	NN for identification of jet from τ
	P _T ^{miss} > 12 GeV DIS 2007, 1620.04.2007, Munich, Germany

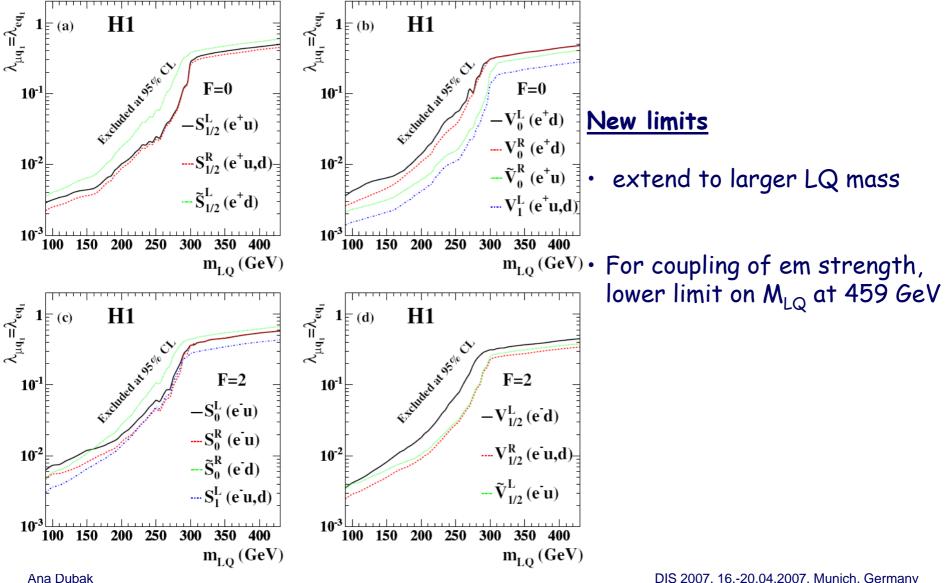
Control distributions of the τX sample


DIS 2007, 16.-20.04.2007, Munich, Germany

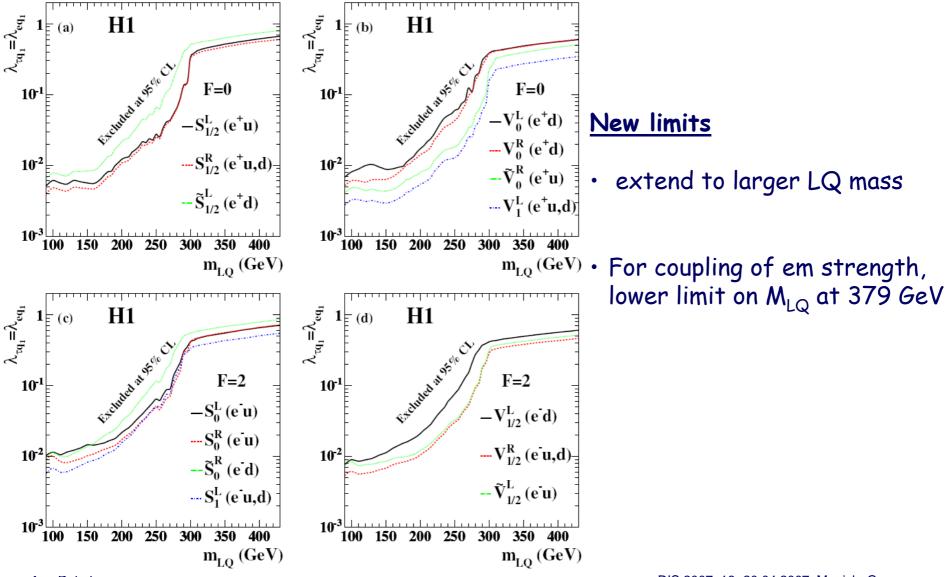
Limits on the coupling constant


Limits derived

- assuming only one of the couplings λμq, λτq non-zero
- Including published
 LFC channels from
 HERA I data


DIS 2007, 16.-20.04.2007, Munich, Germany

Limits with free β_{LFV}


- First limits with free $\beta_{LFV} = \lambda_{lq} / (\lambda_{lq} + \lambda_{eq}), l = \mu, \tau$ i.e. independent $\lambda_{eq}, \lambda_{lq}$
- For $\beta_{LFV} \gg 0.5$ the analysis extends the published limits on λ_{eq} to lower values

Upper limits on $\lambda \mu q$

DIS 2007, 16.-20.04.2007, Munich, Germany

Upper limits on $\lambda \tau q$

DIS 2007, 16.-20.04.2007, Munich, Germany

Summary

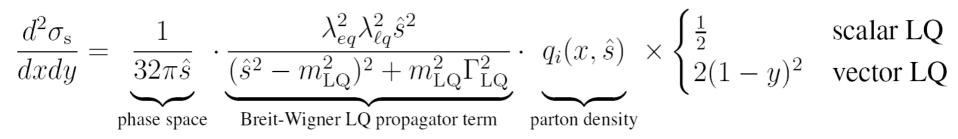
- Search for LQ coupling to first generation fermions using polarised e⁻p HERA II data
 - Increased sensitivity to F=2 LQs due to increased sample
 - No signal observed, limits on LQs set
 - For coupling of em strength lower limits on M_{LQ} 276-304 GeV
- Search for LVF using full HERA I data
 - No LFV process induced by LQ with F = 0, 2 found
 - For coupling of em strength LQs with $M_{LQ} < 459$ GeV (e->µ), $M_{LQ} < 379$ GeV (e-> τ) ruled out

• HERA II data to be fully exploited

- High luminosity
- Polarised lepton beam

Backup slides

Ana Dubak


DIS 2007, 16.-20.04.2007, Munich, Germany

Leptoquarks

Туре	J	F	Q	ep dominant process		Coupling	Branching ratio β_{ℓ}
S_0^L	0	2	-1/3	$e_L^- u_L \rightarrow \left\{ \begin{array}{cc} \end{array} \right.$	$\ell^- u \\ \nu_\ell d$	$\lambda_L \\ -\lambda_L$	$1/2 \\ 1/2$
S_0^R	0	2	-1/3	$e_R^- u_R \rightarrow$	$\ell^- u$	λ_R	1
\tilde{S}_0^R	0	2	-4/3	$e_R^- d_R \rightarrow$	$\ell^- d$	λ_R	1
S_1^L	0	2	-1/3	$e_L^- u_L ightarrow iggl\{$	$\ell^- u \\ \nu_\ell d$	$-\lambda_L$ $-\lambda_L$	$\frac{1/2}{1/2}$
			-4/3	$e_L^- d_L \rightarrow$	$\ell^- d$	$-\sqrt{2}\lambda_L$	1
$V^L_{1/2}$	1	2	-4/3	$e_L^- d_R \rightarrow$	$\ell^- d$	λ_L	1
$V^R_{1/2}$	1	2	$-1/3 \\ -4/3$	$e_R^- u_L ightarrow e_R^- d_L ightarrow$	$\ell^- u$ $\ell^- d$	$\lambda_R \ \lambda_R$	1 1
$\tilde{V}^L_{1/2}$	1	2	-1/3	$e_L^- u_R \rightarrow$	$\ell^- u$	λ_L	1
V_0^L	1	0	+2/3	$e_R^+ d_L ightarrow \Biggl\{$	$\ell^+ d$ $\bar{\nu}_\ell u$	$\lambda_L \ \lambda_L$	$1/2 \\ 1/2$
V_0^R	1	0	+2/3	$e_L^+ d_R \rightarrow$	$\ell^+ d$	λ_R	1
\tilde{V}_0^R	1	0	+5/3	$e_L^+ u_R \rightarrow$	$\ell^+ u$	λ_R	1
V_1^L	1	0	+2/3	$e_R^+ d_L \rightarrow \left\{ \right.$	$\ell^+ d$ $\bar{\nu}_\ell u$	$egin{array}{c} -\lambda_L \ \lambda_L \end{array}$	$\frac{1/2}{1/2}$
			+5/3	$e_R^+ u_L \rightarrow$	$\ell^+ u$	$\sqrt{2}\lambda_L$	1
$S_{1/2}^{L}$	0	0	+5/3	$e_R^+ u_R \rightarrow$	$\ell^+ u$	λ_L	1
$S^{R}_{1/2}$	0	0	+2/3 +5/3	$\begin{array}{ccc} e_L^+ d_L & \to \\ e_L^+ u_L & \to \end{array}$	$\ell^+ d \\ \ell^+ u$	$-\lambda_R$ λ_R	1 1
$\tilde{S}_{1/2}^L$	0	0	+2/3	$e_R^+ d_R \rightarrow$	$\ell^+ d$	λ_L	1

- The 14 leptoquark (LQ) types of the Buchm⁻uller-R⁻uckl-Wyler classication in the Aachen notation.
- The LQ subscripts refer to the weak isospin and the superscripts refer to the lepton chirality.
- Columns 2-4 display the spin J, fermion number F and electrical charge Q.
- The dominant resonant production process in ep scattering and the corresponding coupling is shown in columns 5 and 6 respectively.
- Leptoquarks which couple to a left-handed lepton doublet and can decay into a neutrino-quark pair, have a charged lepton decay branching ratio $\beta_l = \Gamma_{lq} / (\Gamma_{lq} \Gamma_{vq})$.

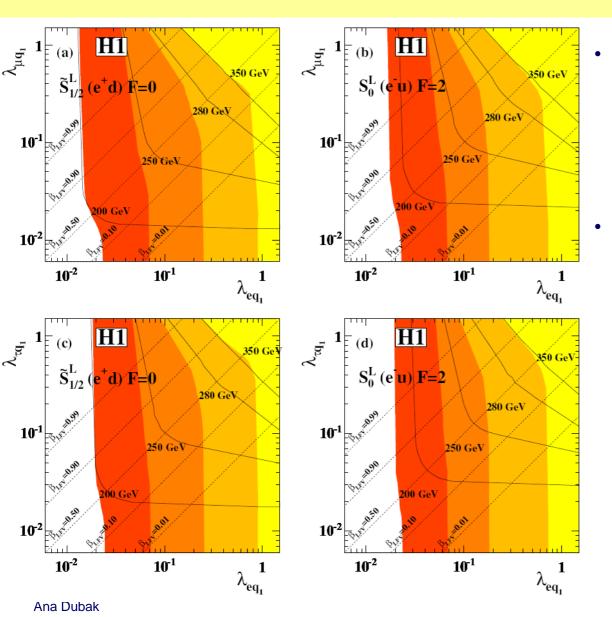
Double differential cross section for the s-channel LQ process

Branching ratio for LQ $\rightarrow \mu(\tau)q$:

$$BR = \beta_{\ell} \times \beta_{LFV} \text{ with } \beta_{LFV} = \frac{\Gamma_{\mu(\tau)q}}{\Gamma_{\mu(\tau)q} + \Gamma_{e}} \text{ and } \Gamma_{\ell q} = m_{LQ}\lambda_{\ell q}^{2} \times \begin{cases} \frac{1}{16\pi} & \text{scalar LQ} \\ \frac{1}{24\pi} & \text{vector LQ} \end{cases}$$

 $\beta_{\ell} = \Gamma_{\ell q} / (\Gamma_{\ell q} + \Gamma_{\nu_{\ell} q})$ Fraction of decays into charged leptons

DIS 2007, 16.-20.04.2007, Munich, Germany


Angular distribution of LQ decays

Angular distribution

 $y = 0.5(1 - cos\theta^{\star})$ θ^{\star} - e scattering angle in $eq(\nu q)$ rest frame

Scalar Leptoquarks $\frac{d\sigma}{dy}\Big|_{scalar} \rightarrow flat$ Vector Leptoquarks $\frac{d\sigma}{dy}\Big|_{vector} \sim (1-y)^2$ NC DIS (Background) $\frac{d\sigma^{e^{\pm p}}}{dy} \sim \frac{1}{y^2}$

Limits with free β_{LFV}

- For very low values of β_{LFV} ($\lambda_{eq} \gg \lambda_{\mu\tau q}, \lambda_{\mu\tau q}$) reproduce published results
- For $\beta_{LFV} \gg 0.5$ the analysis extends the published limits on λ_{eq} to lower values