

H1 Results

Cristinel DIACONU

Centre de Physique des Particules de Marseille and Deutsches Elektronen Synchrotron Hamburg

April 16, 2007, DIS Plenary

H1 and the HERA program

HERA:

p (920 GeV) e (27.6 GeV)

318 GeV

- HERA 1: 1992-2000 ~120 pb⁻¹/expt
- HERA 2: 2003-2007 luminosity upgrade

End of High Energy run March 20 2007

H1 Harvest at HERA 1+2: ~478pb⁻¹

• ~184 pb⁻¹ e⁻p

• ~294 pb⁻¹ e⁺p

Since April 2007: Low Energy Run E_p =460 GeV

HERA program entering an exciting period: final analyses

The expectations from the HERA program

and an outline of this talk

•Search for the "rare" and the "unexpected": <u>HERA as a frontier collider</u>

• L~0.5 fb⁻¹ search for processes with $\sigma \le 1$ pb

•Proton structure with highest precision: <u>HERA as a proton imaging device</u>

- PDF's with best precision high Q2 and low Q2
- The longitudinal structure function F₁

•QCD studies in a clean high energy laboratory: <u>HERA as a QCD machine</u>

• Exclusive final states: α_s from jets, charm, photons, DVCS

•News from the E_p=460 GeV run

Event with isolated e or <u>u</u> and P₊^{miss}

H1 HERA 1 (118 pb⁻¹, mainly e⁺p) P_T^x>25 GeV 11 (Data) / 3.5±0.6 (SM) (3σ)

=>Look more differentially in e⁺p/e⁻p data samples

Continue to observe events at high P_{τ}^{x}

H1 Results (e and μ) e⁺p vs. e⁻p data

•Different observations in e⁺p and e⁻p.

H1/ZEUS results at P₊×>25 GeV

H1 excess remains at high P_T^{x} in e^p data at 3.0σ level, not clarified with HERA II data

In the full phase space: W production in ep collisions measured, To be further studied with a statistics of ~80 events (H1+ZEUS) [similar for electrons]

τ + P₋^{miss} e⁺p vs. e⁻p data

New Result Full HERA statistics

Jets with single tracks in CC events

[talk Y. de Boer]

Multilepton events

8

General Searches

New result Full HERA II

H1 General Search, HERA II e⁺p (178 pb⁻¹) •Search for isolated particles at high P₊ Events 10⁵ H1 Data (prelim.) •Electrons .Photons, Muons, Hadronic Jets, Neutrinos 10 SM 10^{3} •Unique phase space: 10² P₇ >20 GeV 10 L **10°<θ<140°** 1 D0, PRD64, 012004 (2001) H1, Phys Lett B602 (2004) 14 10⁻¹ •Investigate Mass and ΣP_{T} 10⁻² <u>-</u> e-j-j j-j-v e-j-v μ-j-γ e-j-γ -j-j-j-j-j-j 2 a ⊐ n-n Ξ Ϋ́Ξ e e <u>-</u> **₽** E 4 •Statistical Analysis (search for deviations) H1 General Search, HERA II e p (159 pb⁻¹) H1 General Search, HERA II e⁺p (178 pb⁻¹) 10⁵₽ Events Number of Event Classes M_{all} Scan H1 Data (prelim.) **10⁴** H1 Data (prelim.) SM **MC Experiments** 10 10^{3} F 10² v jet 10 ۱Ē 1 10 -log₁₀ P 10^{-2} Ō 0.5 1.5 2.5 2 1 e-e-e **e-j**-v μ-j-v **e-**j-γ i-i-i e-i-i i-i-v **4** e-ee-j-j-j j-j-j-v Ξ 2 2-0 9-9 n'-n' **e-**√ Ŧ 2 3 5

Search for lepton-boson resonances

v* also explored [talk N. Trihn]

Leptoquarks: new domain explored

Proton structure at high Q2: xF₃

$$\frac{d^2 \sigma_{\rm NC}^{e^{\pm} p}}{dx dQ^2} = \frac{2\pi \alpha^2 Y_+}{xQ^4} \left[\tilde{F}_2(x, Q^2) \mp \frac{Y_-}{Y_+} x \tilde{F}_3(x, Q^2) - y^2 F_L \right] \quad \Rightarrow \quad x \tilde{F}_3 = \frac{Y_+}{2Y_-} \left[\tilde{\sigma}^-(x, Q^2) - \tilde{\sigma}^+(x, Q^2) - \tilde{\sigma}^$$

dominated by photon-Z interference

$$egin{aligned} xF_3^{\gamma Z} &= rac{x}{3}[2u_v+d_v+\Delta] \ \Delta &= 2(u_{sea}-ar{u}+c-ar{c}) \ &+(d_{sea}-ar{d}+s-ar{s}) \end{aligned}$$

sensitive to valence quarks @ low x

Improvement expected from full HERA data L(H1+ZEUS)=1fb⁻¹

error reduction by another 30%

combining H1 and ZEUS data L=270(H1)+209(ZEUS) pb⁻¹

more on e-beam polarisation asymmetry in Massimo's talk

12

Light quark couplings to Z

NC/CC data=> full QCD/EW Fit: PDF's+light quarks couplings Now taking advantage of polarisation @HERA II : new fit

A factor 2 increase in (e⁺p) luminosity still to go

e(k)

p(P)

 $(\mathbf{a}_{a}, \mathbf{v}_{a})$

e(k'

 $\gamma, Z^0(q)$

Low Q²measurements

High y regime and F_L

New analysis (HERA II) e⁺p/e⁻p Data

Background subtracted using charge tag e⁺p/e⁻p samples complement/compare

High y measurement for Q²=8.5 – 35 GeV²

$$\sigma_r = F_2(x, Q^2) - \frac{y^2}{Y_+} \cdot F_L(x, Q^2)$$

Uncertainties divided by a factor of 2

Direct F_L measurement

17

Jet production in DIS: high Q²

Strong coupling measurement

$\alpha_{\rm s}$ from Inclusive Jet Cross Section

Most precise values obtained from the ratio $\sigma(\text{jets})/\sigma(\text{inclusive})$ $\alpha_s(M_Z) = 0.1193 \pm 0.0014 \text{ (exp.)} {}^{+0.0046}_{-0.0032} \text{ (th.)} \pm 0.0016 \text{ (pdf.)}$ $\alpha_s(M_Z) = 0.1176 \pm 0.0020 \text{ (PDG)}$

Theory error is reduced at high Q², experimental error increases $700 < Q^2 < 5000 \,\text{GeV}^2$ $\alpha_s(M_Z) = 0.1172 \pm 0.0021 \,(\text{exp.}) \, {}^{+0.0032}_{-0.0017} \,(\text{th.}) \, \pm 0.0010 \,(\text{pdf.})$

Improvement expected with full data (/2), theory?

Jet Production at low Q2

HERA I data: single and double differential cross sections measured increased statistics and better precision

Sensitivity to the strong coupling, scale dependence still the issue (NNLO needed)

Charm Production in DIS

HERA II data L=222 pb⁻¹

[talk M.Steder]

 P_{T}^{*2} [GeV²]

Isolated photon production

HERA I+II Data

10

10

Deeply Virtual Compton Scattering e^{+p 145 pb⁻¹} e^{-p 146 pb-1}

geometric scaling

HERA II

DVCS: e⁺p/e⁻p asymmetry

Interference as "extractor" of new effects

First measurement in collision mode at HERA

Not covered in this talk

Diffractive Charm [talk Paul Thompson]
Diffractive Dijets [talk Matthias Mozer]
Status of the H1 VFPS [talk Laurent Favart]
Minijet Production in DIS [talk Sakar Osman]
Xi-pi Baryon Search [talk Marc Del Degan]
3-jet Production in DIS [talk Grazina Nowak]
Charm Production with Jets [talk Sebastian Schmidt]

News from the low energy run

Conclusions and outlook

- H1 collected ~0.5 fb⁻¹ at E_{cm} ~320 GeV
 - Searches for new physics ongoing, full statistics exploited
 - 3σ effect on isolated leptons remains
 - High Q² measurements: PDF constraints and EW effects from fits
 - Low Q2: best precision approached using now HERA II data
 - QCD studies: HQ production, jets, α_s , diffraction...
- Low energy run ongoing
 - F_Lfundamental measurement, independent constraint on gluon density
- New step in HERA program: end of collisions 07/2007
 - plethora of new results expected from HERA in the next years
 - improvements in statistics, systematics challenges
 - H1+ZEUS combination
- Rich legacy to LHC and beyond is being built now