

Searches for new physics and electroweak measurements at HERA

Alessandro Montanari (DESY) on the behalf of H1 and ZEUS

- Introduction
 - Experimental setup
 - Deep Inelastic Scattering at high Q²
- Electroweak measurements
 - $xF_3^{\gamma Z}$, EW measurements with polarized beams
- Beyond Standard Model searches
 - Model independent (topology based)
 - Model based (excited v, quark radius, contact interaction)

HERA: world's only ep collider

Deep Inelastic Scattering at HERA

HERA: Kinematic range

4

EW Unification

HERA II: beam polarization

HERA-II: Longitudinally polarised leptons \rightarrow direct EW sensitivity (directly test chiral structure of SM: RH \neq LH \Leftrightarrow parity violation)

- **CC:** pure weak = 100% parity violating in SM \rightarrow only LH particles (RH anti-particles) interact cross section modified by linear scale factor: $\sigma_{cc}^{\pm}(P_e) = (1 \pm P_e) \cdot \sigma_{cc}^{\pm}(P_e=0)$
- NC: weak parity violation through γZ interference and pure Z \rightarrow visible only at high Q² (γZ , Z terms contain EW parameters: quark couplings to Z, sin² θ_w , M_z,...)

CC Polarisation Dependence

$$\sigma_{CC}^{\pm}(P_{e}) = (1 \pm P_{e}) \sigma_{CC}^{\pm}(P_{e}=0)$$

Linear dependence Extrapolation to $P_e=\pm 1$: limits on RH σ_{cc}

$\sigma_{cc}(e^{-}p)$ [pb] extrapolated to P _e = +1		
H1 (prel.)	$-0.9\pm2.9_{stat}\pm1.9_{syst}\pm2.9_{pol}$	
ZEUS (prel.)	0.8±3.1 _{stat} ±5.0 _{syst+pol}	
σ _{cc} (e⁺p) [pl	b] extrapolated to $P_e = -1$	
<mark>σ_{cc}(e⁺p) [p</mark> l H1 (pub.)	b] extrapolated to $P_e = -1$ -3.9±2.3 _{stat} ±0.7 _{syst} ±0.8 _{pol}	

Consistent with NO RH Charged Currents! Convert to 95% CL on heavy W_R boson (assuming $g_L = g_R$ and v_R is light):

- M_{wR} > 208 GeV (H1, e+p)
- M_{wr} > 186 GeV (H1, e-p)
- M_{wR} > 180 GeV (ZEUS, e-p)

Polarisation Effects in NC

Polarisation effects are subtle in NC DIS Reduced cross section: $\sigma_{NC}(e^{\pm}p) \sim Y_{+}F2 \mp Y_{-}xF3 - y^{2}F_{L}$ $\kappa_{z} \sim Z$ propagator $F2(\pm Pe) = F2^{\gamma} - (v_{e} \pm Pe a_{e}) \kappa_{z} F2^{\gamma Z} + ((v_{e}^{2}+a_{e}^{2}) \pm Pe 2v_{e}a_{e}) \kappa_{z}^{2} F2^{Z}$ $xF3(\pm Pe) = -(a_{e} \pm Pe v_{e}) \kappa_{z} xF3^{\gamma Z} + (2v_{e}a_{e} \pm Pe (v_{e}^{2}+a_{e}^{2})) \kappa_{z}^{2} xF3^{Z}$

Weak parity violating effect though γZ interference and pure Z \Rightarrow high Q2 only γZ dominates (pure Z suppressed by additional propagator i.e. $\kappa_z >> \kappa_z^2$ and $v_e \approx 0.04$)

Polarisation Effects in NC

Polarisation effects are subtle in NC DISReduced cross section: $\sigma_{NC}(e^{\pm}p) \sim Y_{+}F2 \mp Y_{-}xF3 - y^{2}F_{L}$ $\kappa_{z} \sim Z$ propagator $F2(\pm Pe) = F2^{\gamma} - (\pm Pea_{e})\kappa_{z}F2^{\gamma Z}$ $\kappa_{z} \times F3(\pm Pe) = -(a_{e})\kappa_{z} \times F3^{\gamma Z}$

Weak parity violating effect though γZ interference and pure Z \rightarrow high Q2 only γZ dominates (pure Z suppressed by additional propagator i.e. $\kappa_z >> \kappa_z^2$ and $v_e \approx 0.04$)

Unpolarised: $\sigma(e^{+}p) - \sigma(e^{-}p) \rightarrow xF3^{\gamma Z}$ Polarised: $\sigma(P_R) - \sigma(P_L) \rightarrow F2^{\gamma Z}$ \longrightarrow EW structure functions in QPM (γZ): $F2^{\gamma Z} = 2 e_q v_q \Sigma x(q+qbar)$ $xF3^{\gamma Z} = 2 e_q a_q \Sigma x(q-qbar)$

xF3 and Valence Quarks

NC Couplings to light quarks

18/09/07

A. Montanari - EW and BSM at HERA

NC Cross Section Asymmetry

Asymmetry of RH/LH cross sections:

$$A^{\pm} = \frac{2}{P_{R}} - P_{L} \frac{\sigma^{\pm}(P_{R}) - \sigma^{\pm}(P_{L})}{\sigma^{\pm}(P_{R}) + \sigma^{\pm}(P_{L})}$$

Expect $A^* \approx -A^-$ in the SM:

$$\mathbf{A}^{\pm} \approx \mp \kappa_{\mathbf{Z}} \mathbf{a}_{\mathbf{e}} \frac{\mathbf{F} \mathbf{2}^{\gamma \mathbf{Z}}}{\mathbf{F} \mathbf{2}^{\gamma}} \propto \mathbf{a}_{\mathbf{e}} \mathbf{v}_{\mathbf{q}}$$

Direct measure of A Parity Violation through a_ev_q term

 χ^2 of $\delta A = A^+ - A^- = 0$ is 4.0 (3.1 x10⁻³ prob.)

Parity violation observed for the first time @ EW scale

QCD+EW Fits to HERA Data

QCD+EW Fit: to simultaneously determine EW and PDF parameters

Beyond SM Searches

- Model independent
 - Isolated leptons
 - Multi-electrons
 - General searches
- Model dependent
 - Excited fermions
 - Quark radius
 - Contact interactions

Other: leptoquark, SUSY, isolated τ-lepton (not in this talk)

Is olated Leptons

In the SM, is olated leptons are produced by single W production

Selection: • Quark jet with large transverse momentum

- Is olated lepton
- Large missing transverse momentum

P _⊤ ×>25 GeV	electrons	muons
e+p (0.58 fb-1)	12/7.4±1.0 (78%)	11/7.2±1.0 (85%)
e-p (0.39 fb-1)	4/6.0±0.8 (67%)	2/4.8±1.0 (87%)
e±p (0.97 fb-1)	16/13.3±1.7 (73%)	13/12.0±1.6 (86%)

Is olated Leptons: single top production(?)

A. Montanari - EW and BSM at HERA

Multi-leptons (positrons and electrons)

HERA-I+II

Events

General Searches

A model-independent search for deviation from SM prediction is performed

Inspected 178 pb⁻¹ e+p and 152 pb⁻¹ e-p data set

All topologies with: e, γ , μ , ν , jets with P_T>20 GeV

Good agreement between data and SM predictions

Agreement to SM quantified by looking for maximum deviation in $\Sigma~P_{_{\rm T}}$ and $M_{_{\rm all}}$ distributions

Observed fluctuations compatible with the SM prediction

_)

Excited Neutrinos

Search for Compositeness scale in neutrino production

 v^* produced through CC interaction in e-p interaction (higher CC cs)

Investigated all the EW decays:

• $v^* \rightarrow v \gamma$ $\rightarrow v Z$

• v* → e W

Used x10 more statistic than the previous publication

Good agreement data with the SM

Limits derived in the context of gauge mediation using the Hagiwara model

Quark Radius and Contact Interaction

ZEUS Preliminary

Deviation on the $\sigma_{_{NC}}$ due to extra terms:

- Quark radius factor: (1-R_a²Q²/6)
 - ZEUS: 0.67 10⁻¹⁸ m
 - H1: 0.74 10⁻¹⁸ m
- Contact interaction coupling Λ : $4\pi/\Lambda^2$

Conclusions

- HERA has provided, in 15 years of activity, almost 1 fb⁻¹ of data (H1 + ZEUS).
- Provided a precision test of EW physics
- Searched for anomaly distributions in particular event topology → limits on several beyond SM models
- Entering an exciting phase of analysis and results combining full H1 and ZEUS data
- Expect the final statements from HERA on EW and BSM in the near future!