Physics Results from HERA

Christian Kiesling Max-Planck-Institute for Physics, München

0.8

0.6

0.4

0.2

 $Q^2 = 6 \text{ GeV}^2$

10-3

9666

10-4

 F_L

- Introduction to HERA: the QCD-machine lacksquare
- Recent Results from Inclusive Scattering $oldsymbol{0}$
- Diffraction at HERA lacksquare
- Partonic Structure of Diffractive Exchange $oldsymbol{0}$
- The last 3 Months
- Summary and Conclusions
- C. Kiesling, C2CR07, Feb. 26 Mar. 1, 2007, Lake Tahoe, California, USA

HERA - the world's largest electron microscope (Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany)

HERA Luminosity

C. Kiesling, C2CR07, Feb. 26 - Mar. 1, 2007, Lake Tahoe, California, USA

Deep Inelastic Scattering (DIS)

C. Kiesling, C2CR07, Feb. 26 - Mar. 1, 2007, Lake Tahoe, California, USA

DIS:

electron scatters off a charged constituent (parton) of the proton (= elastic scattering)

$$\begin{split} \frac{d^2\sigma\left(e^{\pm}p\right)}{dx\,dQ^2} = & \frac{2\pi\alpha^2}{xQ^4}\,Y_+ \left[F_2 - \frac{y^2}{Y_+}\,F_L \mp \frac{Y_-}{Y_+}\,xF_3\right]\\ Y_{\pm} = & 1\pm(1-y)^2 \end{split} \text{``reduced cross section''} \sigma_r \end{split}$$

 γ exchange only:

$$F_2(x) = \sum_{i=u,d} e_i^2 x q_i(x)$$
 parton densities $x f_i(x)$ (pdf)

$$W^{\pm}$$
 exchange only:

$$e^- p: \quad F_2(x) \sim xq_u(x)$$

 $e^+ p: \quad F_2(x) \sim (1-y)^2 xq_d(x)$

Quantum Chromodynamics (QCD)

Basic ingredients of QCD:

1. Asymptotic freedom :

 $\begin{array}{l} \alpha_{\rm s} \rightarrow 0 \quad {\rm at \ short \ distances} \\ & \longrightarrow \quad {\rm perturbative \ QCD \ (pQCD)} \\ \end{array}$ 2. Factorization : $\sigma = \sum_{i} \sigma_{\gamma^{*}i}(Q^2) \otimes x f_i(x) \\ \end{array}$

non-perturbative part C. Kiesling, C2CR07, Feb. 26 - Mar. 1, 2007, Lake Tahoe, California, USA

3. Evolution (calculable in pQCD) :

Parton densities become functions of Q^2 $xq_i(x) \rightarrow xq_i(x,Q^2)$ quarks $x\overline{q}_i(x,Q^2)$ antiquarks + gluons $g(x,Q^2)$ Boson-gluon fusion (BGF)

Kinematic Regime of HERA

- large reach in x
- large reach in Q²

"Inclusive" scattering (integrate over all hadronic final states X)

pdf's of quarks from F₂

pdf of gluon from
 Q² variation of F₂
 (e.g. DGLAP evolution)

New:
$$P_e = \frac{N_R - N_L}{N_R + N_L}$$

longitudinal polarization

QCD Analysis of F_2 data (low and high Q^2)

Very precise measurements of $\ F_2$ provided by ZEUS and H1

Clear scaling violation observed, violation is driven by gluon emission

Describing this data in a QCD fit gives access to the parton densities within the proton

- Parameterize parton densities, typically $xf(x,Q_0) = Ax^B(1-x)^C [1 + D\sqrt{x} + Ex]$
- Fit data to obtain the various parameters (e.g. H1 uses 16 including $\alpha_{\rm S}$), evolution in Q², e.g. using DGLAP equations

Data are very well described by QCD

Electroweak Unification at High Q² (NC & CC)

combine data from both polarization states (unpolarized cross sections)

$$\sigma_{NC} \gg \sigma_{CC}$$

for
$$Q^2 \ll M_Z^2$$

(photon exchange dominates)

$$Q^2 \ge M_Z^2$$
 : $\sigma_{CC} \sim \sigma_{NC}$

manifest electroweak unification

Recent results from High Q² Reactions (CC)

C. Kiesling, C2CR07, Feb. 26 - Mar. 1, 2007, Lake Tahoe, California, USA

Total CC cross section with longitudinally polarized electrons and positrons

$$\sigma_{cc}^{e^{\pm}p}(P_e) = (1 \pm P_e)\sigma_{cc}^{e^{\pm}p}(P_e = 0)$$

- linear dependence on ${\cal P}_e$ firmly established

- extrapolations to $P_e = \mp 1$ consistent with zero
 - no right-handed weak currents

$$e^-: M_{W_R} > 208 \,\mathrm{GeV}$$

 $e^+: M_{W_R} > 186 \,\mathrm{GeV}$

95% C.L. 10

Recent results from High Q² Reactions (NC)

Uncertainties of the Parton Distribution Functions

• Combined EW and QCD fit, including also data from inclusive (di) jets

pdf's are supposed to be "universal", test these ideas in more detail:
 diffraction

Diffraction: a short Introduction

- All total cross sections involving strongly interacting particles (hadrons) show approximate constancy,
 ¹⁰⁰ more precisely: a universal slow rise towards high energy
- "constant" cross sections arise from Diffractive Phenomena
- Regge theory: trajectory in the t-channel vacuum QNE = "Pomeron"
- QCD: colorless exchange Gluons, quarks in a color singlet ?

What is diffraction in the partonic language?

From Inclusive Scattering to Diffraction: Kinematics

Factorization: the General Idea

below the red line: universal diffractive parton densities, identical for all processes

Test of factorization: measure pdf's in one process, use in another process for the prediction and compare to the data

Diffractive Cross Sections and QCD Factorization

(QCD) Factorization for diffractive scattering (Collins et al.):

$$\frac{d^2 \sigma^{\gamma^* p \to p' X}(x, Q^2, x_{\mathbf{P}}, t)}{dx_{\mathbf{P}} dt} = \sum_i \int_x^{x_{\mathbf{P}}} d\xi f_i^D(\xi, Q^2, x_{\mathbf{P}}, t) \hat{\sigma}^{\gamma^* i}(\xi, Q^2)$$

 $\begin{array}{l} f_i^D(\xi,Q^2,x_{\mathbf{P}},t) & \mbox{diffractive PDF's of flavor } i \mbox{ in the proton, for fixed } x_{\mathbf{P}},t \\ (\mbox{evolves in } Q^2 \mbox{ according to } \mathsf{DGLAP}) \\ \hat{\sigma}^{\gamma^*i}(\xi,Q^2) & \mbox{universal, hard scattering cross section, calculable in pQCD} \end{array}$

Regge Factorization

Additional assumption (no proof):

Regge factorization, the "Resolved Pomeron" (Ingelman-Schlein-Model)

shape of diffr. PDF's independent • of $x_{\mathbf{p}}, t$

Integration over t (usually unobserved):

normalization of
$$F_2^D$$
 controlled by Pomeron flux

$$\sigma_r^{D(3)} = F_2^{D(3)} = \int dt F_2^{D(4)}$$

Experimental Techniques

Selection of diffractive events: 3 methods

Experimental Techniques (cont.)

C. Kiesling, C2CR07, Feb. 26 - Mar. 1, 2007, Lake Tahoe, California, USA

M_× Method

QCD radiation suppressed between struck guark and proton remnant 🔶 rapidity gap

fit to non-diff mass distribution:

$$\frac{dN}{d\ln M_X^2} = D + Ce^{B\ln M_X^2}$$

Experimental Test of Regge Factorization

Partonic Structure of Diffraction: (NLO DGLAP fits)

• ansatz for the partonic structure:

$$\Sigma = \sum_{i=\text{light}} e_i^2 (zq(z,Q^2) + z\overline{q}(z,Q^2)); \quad G = g(z,Q^2)$$
$$u = d = s = \overline{u} = \overline{d} = \overline{s}$$
$$zf_i(z,Q_0^2) = A_i z^{B_i} (1-z)^{C_i} \qquad Q_0^2 = 2.5 \text{ GeV}^2$$

• Charm/bottom via boson gluon fusion

 $\Lambda = 399 \pm 37 \text{ MeV},$

 $m_c = 1.4 \pm 0.2 \,\text{GeV}, \, m_b = 4.5 \pm 0.5 \,\text{GeV}$

- F_L^D via QCD relation
- for large $x_{\rm P}$ and small β the data demand an additional subleading Reggeon (meson exchange)
- NLO DGLAP fit for singlet and gluon contributions to $\sigma_r^{D(3)}(\beta, Q^2, x_{\mathbf{P}})$ $8.5 \,\mathrm{GeV}^2 < Q^2 < 80 \,\mathrm{GeV}^2 \longrightarrow \text{Diffractive pdf's: DPDF}$

Diffractive vs Inclusive DIS: x-depend. β (Diff. DIS) \Leftrightarrow x (DIS)

weak dependence on $\,eta\,$, similar to the photon (few partons ?)

Diffractive vs Inclusive DIS (cont.): Q² dependence

Positive scaling violations up to large β : gluon-dominated

Partonic Structure of Diffraction from the Inclusive Data

Test of QCD Factorization using DPDF's

Combined Fit (Inclusive & Dijet Data)

Further Test: Di-Jets in Diffractive Photoproduction

low virtuality photons at HERA are "hadrons" "large" scale: H1 Diffractive γp Dijets $E_T^{jet} > 5 \,\mathrm{GeV}$ H1 2006 Fit B PDFs H1 Data emn correlated FR NLO*(1+ δ_{had}) uncertainty — FR NLO dσ/dz^{jets} (pb) 00 008 000 0001 Jet "resolved" do/dx^{jets} (pb) ک^۲ دول کر 220 دول direct Jet a) photon resolved Remn 500 400 250 200 0 0.2 0.4 0.6 0.8 10000 j1 0.2 0.4 0.6 0.8 Z^{jets} \mathcal{O}_{j_2} large violation of naïve scaling observed (charm OK!) factorization breaking occurs in resolved and direct processes

> absoptive corrections (Khose et al.) should disappear when $x_{\gamma} \to 1$

р

 X_{γ}^{jets}

Summary and Conclusions

- HERA provides an equivalent of a 50 TeV photon beam.
 -> nice laboratory for UHE γ-rays (-> Cosmic Ray Community)
- Beautiful textbook measurements from HERA with and without polarized e^{\pm} beams. Electroweak model and QCD are verified with high precision. DGLAP works over many orders of magnitude in Q² (good news for LHC)
- Diffraction, contributing a large part of the cross section in soft hadronic interactions, is also a substantial part of hard scattering at HERA. QCD models based on colorless gluon exchange work nicely.
- Strong experimental evidence for gluonic structure of diffractive exchange NLO QCD fit to diffractive data: gluons dominate (~70%).
- QCD factorization verified at HERA in diffractive DIS (di-jets, charm).
 Photoproduction of di-jets breaks factorization, but charm is OK!
- The HERA program will come to an end by July 2007, last three months devoted to F_L measurements (@lower proton energy) as a direct measure of the gluon in DIS and DDIS (-> LHC Community)

BACKup

Further Tests of QCD Factorization in Diffraction

One step further: use dpdf's to predict di-jets at the Tevatron

Factorization Tests in Diffractive Photoproduction (cont.)

NLO calculation by Klasen & Kramer (2004) resolved photon contributions:

C. Kiesling, C2CR07, Feb. 26 - Mar. 1, 2007, Lake Tahoe, California, USA

Ratio diffractive/inclusive dijet photoproduction

factor \sim 3 reduction seems to match with the data

(absorption correction suggested by Kaidalov, Khoze et al., 2003)