Proton Structure at Low x and Low Q² in Deep Inelastic Scattering at Hera

Burkard Reisert for H1 and Zeus

- Deep Inelastic Scattering
- Hera, H1 & ZEUS
- Experimental Results
- Extraction of Parton Densities
- Hera Low Energy Run

Motivation: "Images" of the Proton

MPI Municl

Burkard Reisert

MPI.

Munich

Baryons

Deep Inelastic Scattering

Burkard Reisert

MPI, Munich Baryons 2007

Neutral current DIS cross section expressed by structure functions:

$$\frac{d^2 \sigma^{e^{\pm}p \to e^{\pm}X}}{dx dQ^2} = \frac{2\pi\alpha^2}{xQ^4} \underbrace{\left(1 + \left(1 - y\right)^2\right)}_{Y_{\pm} = 1 \pm \left(1 - y\right)^2} \cdot \underbrace{\left(F_2\left(x, Q^2\right) - \frac{y^2}{Y_{\pm}}F_L\left(x, Q^2\right)\right)}_{\widetilde{\sigma_r}} : \text{Reduced cross section}$$

Photon Proton Scattering

γp Cross Sections:

 $4\pi\alpha$

Burkard Reisert

MPI, Munich Baryons 2007

$$\sigma_T^{\gamma p} = \frac{\pi \alpha}{Q^2} 2xF_1$$
$$\sigma_L^{\gamma p} = \frac{4\pi\alpha}{Q^2} (F_2 - 2xF_1) = \frac{4\pi\alpha}{Q^2} F_l$$

- The same process may be interpreted as scattering of an virtual photon off an proton
- Photon Proton centreof-mass energy:

$$W_{\gamma p}^2 \equiv -(P+q)^2 = ys - Q^2$$

Quark Parton Model (QPM) $F_1(x) = \frac{1}{2x} \sum_q e_q^2 xq(x)$ $F_2(x) = \sum_q e_q^2 xq(x)$ $F_L(x) = F_2 - 2xF_1 = 0$ Callan Gross relation

Structure Functions

- Proton Structure FunctionF₂
 - $F_{2} = \sum_{q} A_{q} \left(Q^{2}\right) \left[xq + x\overline{q}\right], \text{ at low } Q^{2}: A_{q} \left(Q^{2}\right) = e_{q}^{2}$ $A_{q} \left(Q^{2}\right): \text{ Electro weak coefficient function}$
- Longitudinal Structure Function F_L Quark Parton Model (spin ½ partons only): F_L=0

QCD:
(NLO)
$$F_L = \frac{\alpha_s}{4\pi} x^2 \int_x^1 \frac{dz}{z^3} \left[\frac{16}{3} \sum_q e_q^2 \left(xq + xq \right) + 8 \sum_q e_q^2 \left(1 - \frac{x}{z} \right) zg \right]$$

(NLO) $F_L = \frac{\alpha_s}{4\pi} x^2 \int_x^1 \frac{dz}{z^3} \left[\frac{16}{3} \sum_q e_q^2 \left(xq + xq \right) + 8 \sum_q e_q^2 \left(1 - \frac{x}{z} \right) zg \right]$

Direct sensitivity to gluon

Burkard Reisert

MPI, Munich Baryons 2007

- F2 is sensitive to quark densities, gluons are accessible only through scaling violations
- Sizable contribution of F_Lonly at high y

Burkard Reisert

MPI, Munich Baryons 2007

HERA Accelerator Performance

Baryons 2007

MPI.

H1 Low Q² Data Samples

Cross Sections at Lowest Q²

MPI Municl

Burkard

Reisert

MPI.

Munich Baryons

2007

- •Measurement presented as effective γ*p cross section
- precision of combined measurements better than 2%

 Smooth transition from perturbative to non-perturbative regime at Q² ~ 1GeV²

Cross Sections at Lowest Q²

Baryons 2007

Munich

MPI Munich

Burkard

Reisert MPI.

New Measurement at High y

- ZEUS performed a new DIS measurement which is optimized for high-y.
- Previous measurement: 1996-97 data (HERA-I).
- New trigger was developed.
 - → It allows to go to lower electron energy.

 $8 \text{GeV} \rightarrow 5 \text{GeV}$

New kinematic region at high-y

- High-y = Low Ee;
 - Ee should be well understood.
 - Severe background contamination.

The same analysis method can be also used in F_L measurement.

Burkard Reisert MPI.

Munich Baryons

Reduced Cross Section vs. y

2007

- Measured reduced cross sections are compared to SM predictions with
 - CTEQ5D
 - ZEUS-Jets PDF

 \rightarrow They are well described by the predictions.

- Systematic checks
- Electron energy scale 2%
- PHP norm. factor 10%
- Electron finding inefficiency 10%
- E-pz threshold 2GeV

High y Results from H1

Precision improved by factor 2 w.r.t. previous publications

total error: 2-3%

Will be extended to lower and higher Q²

MPI, Munich Baryons 2007

Reisert

Structure Function F_2

MPI Munici

Burkard

Reisert MPI,

Munich

Baryons

2007

14

e´ k

k

х

PDF results

Both Collaborations perform NLO QCD Fits to extract Parton Densities Functions from HERA data only

H1&Zeus: dedicated Fit exploiting inclusive cross sections NC & CC, e⁺p & e⁻p, Zeus includes Jet data

Despite many differences in details of the fits (e.g. data samples implementation of NLO scheme, parameterized PDFs, starting scale, etc...) resulting PDFs are in good agreement

Largest differences seen for gluon

MPI Munici

Burkard

Reisert MPI, Munich Baryons

Charm & Beauty Structure

Charm and Beauty production in DIS is driven by gluons in the proton

Charm tag: reconstruct D mesons Beauty tag: displaced vertex, soft μ

MPI, Munich Baryons 2007

Reisert

ZEUS

Direct measurement of F

- Measurement of F_L will give access to gluon: $F_L \propto \int \frac{dz}{z^3} \sum_{z} e_q^2 \left(1 \frac{x}{z}\right) zg$
- Measure cross section $\sigma_r = F_2(x,Q^2) \frac{y^2}{Y_+}F_L(x,Q^2)$ at same *x* and Q2 but different y, i.e. different centre-of-mass energy

- Change proton beam energy to change cms energy
- Large level arm in y^2/Y_+
- measure at high y in LER

Burkard Reisert

MPI, Munich Baryons 2007

- measurement in is already extended to high y region
- Both detectors in good shape
- Need ~10pb⁻¹ for measurement

ZEUS

First Look at Low Energy Data

- Both experiments are collecting data with good efficiency
- Quick look at the first week of LER data taking (~1pb⁻¹)
 - \rightarrow Good data quality

Burkard Reisert

MPI, Munich Baryons 2007

Summary

- H1 performed final measurement of cross section at low Q2 for HERA-I, showing a smooth transition from perturbative to non-perturbative regime.
- H1 & Zeus explore the full kinematic regime accessible at HERA including high y region.
- Extraction of flavor separated PDFs by both experiments
- HERA Low Energy running will measure F_L giving access to gluon density

Burkard Reisert

MPI, Munich Baryons 2007 Precise measurements of cross sections and structure functions are an integral part of the rich HERA legacy

Backup slide

Contents:

Burkard Reisert

MPI, Munich Baryons 2007

Deep Inelastic Scattering

Burkard Reisert

MPI, Munich Baryons 2007

$\frac{d^{2}\sigma^{e^{\pm}p \rightarrow e^{\pm}X}}{dxdQ^{2}} = \frac{2\pi\alpha^{2}}{xQ^{4}} \underbrace{\left(1 + \left(1 - y\right)^{2}\right)}_{Y_{\pm} = 1 \pm \left(1 - y\right)^{2}} \cdot \left(F_{2}\left(x, Q^{2}\right) - \frac{y^{2}}{Y_{+}}F_{L}\left(x, Q^{2}\right) \mp \frac{Y_{-}}{Y_{+}}xF_{3}\left(x, Q^{2}\right)\right)}_{\widetilde{\sigma}: \text{ Reduced cross section}}$ 21

Neutral current DIS cross section expressed by structure functions:

H1 & Zeus Experiments

Burkard Reisert

MPI, Munich Baryons 2007 Compensating Uranium Scintillator Calorimeter (~6000 cells) $\Delta E_e/Sqrt(E_e(GeV) = 18\%)$ $\Delta E_h/Sqrt(E_h(GeV) = 35\% \oplus 1\%)$ $\delta \theta_e = 2mrad$ Calorimeters with high Granularity (Liquid argon & Scint. fiber + lead Calorimeters: ~ 45000 cells) $\Delta E_e/Sqrt(E_e(GeV) = 12\% \oplus 1\%)$ $\Delta E_h/Sqrt(E_h(GeV) = 50\% \oplus 1\%)$ $\delta \theta_e = 3mrad$ (cal) 2mrad (tracker) 22

Combination of Datasets

combination of data sets requires a proper handling of systematic & statistical errors.

Let Λ^i be a set of cross section measurement, then Λ^{Ave} is obtained:

MPI Munich

Burkard

MPI, Munich Baryons

2007

Output:

 Λ^{Ave} , α shift on the uncertainty of the source

Reisert sensitivity to correlated syst stat+uncorr uncertainty

Extraction of F₁

Burkard Reisert

?

MPI, Munich **Baryons**

Comparison with HERA-I results

 Measurement is extended to high-y region especially at low Q² compared to HERA-I.

25

Burkard Reisert

MPI, Munich Baryons 2007

Additional Material & Ideas for Improvements

- Add F2 summary plot and slide of charged current results, before parton extraction
- I would like to include F2cc & F2bb if time allows.
- ? Candidates for being removed

To Do:

Burkard Reisert

MPI, Munich Baryons 2007

Find figures of better quality for some plots

H1 Final Combination

Munich Baryons 2007

MPI Munich

Burkard

Reisert MPI.

Rise of F₂

MPI Municl

Burkard

Reisert

MPI, Munich Baryons

2007

