Diffraction and Exclusive Vector Meson Production at HERA

L. Favart

I.I.H.E., Université Libre de Bruxelles.

On behalf of the H1 and ZEUS Collaborations BARYONS 2007 - Seoul 11-15th of June 2007

Diffractive processes

- Feature of hadron-hadron interactions (up to 30% of σ_{tot})
- *t*-channel exchange of the vacuum quantum numbers
 - → Small momentum transfer
 - $\rightarrow t << s$
 - \rightarrow small p momentum loss $x_{I\!\!P}(=\xi) < 0.05$
 - → Final state part. separated by a Large Rapidity Gap
 - \rightarrow Beam hadrons scattered elastically or dissociated into a low-mass state (M_Y) .
 - \rightarrow QCD: colourless exchange

Diffractive Signature

Non-diffractif (DIS)

Interest of Hard Diffraction

- Understanding of Diffractive phenomena in terms of QCD
 - \rightarrow two gluon exchange
 - \rightarrow Several possible hard scales: Q^2 , P_T^{Jet} , t, m_q
 - probing the exchange partonic structure like in inclusive structure functions
 - \rightarrow typical signature of hard scale presence: steep rise with W (cms energy)

Interest of Hard Diffraction

- Understanding of Diffractive phenomena in terms of QCD
 - \rightarrow two gluon exchange
 - \rightarrow Several possible hard scales: Q^2 , P_T^{Jet} , t, m_q
 - probing the exchange partonic structure like in inclusive structure functions
 - \rightarrow typical signature of hard scale presence: steep rise with W (cms energy)
- Access to very low x of nucleon structure function and parton correlations \rightarrow the Generalized Parton Distributions (GPDs).
- Test of DGLAP and BFKL asymptotic behaviour dynamics

$$\rightarrow$$
 DGLAP: log(Q²) $\rightarrow k_T$ ordering

- \rightarrow BFKL: $\log(1/x) \rightarrow 1/x$ ordering
- Colour Dipole model approach: transition to non pQCD, saturation

Kinematic

 \boldsymbol{y}

 β

Deep Inelastic Scattering

- $=-q^2$ virtuality of the exchanged photon Q^2
- $W = \gamma^* p$ system energy
- Bjorken-x: fraction of proton's momentum \boldsymbol{x} carried by the struck quark
 - γ^* inelasticity : $y = Q^2/s x$

Diffractive Scattering

- fraction of proton's momentum of the colour ХIР singlet exchange (also named ξ) $x_{I\!\!P} \simeq \frac{Q^2 + M_X^2}{Q^2 + W^2}$ fraction of *IP* carried by the quark "seen"
 - by the γ^* $\beta = x/x_{I\!\!P}$
- $=(p-p')^2$, 4-momentum squared at tthe p vertex

From DIS to Inclusive Diffraction

Historically (60's) diffraction is described by a Pomeron exchange in Regge theory

From DIS to Inclusive Diffraction

Historically (60's) diffraction is described by a Pomeron exchange in Regge theory

- **DVCS:** extension to off-forward scattering. $\gamma^* p \rightarrow \gamma p$ at $t \neq 0$ and $\beta = 1$
- VM production: $\gamma^* p \to VM \ p \text{ at } t \neq 0 \text{ and } \beta \text{ fixed.}$
- Inclusive Diffraction: $\gamma^* p \to Xp$ any M_X , full β range.

BARYONS 2007 - L.Favart - p.6/25

Exclusive processes: DVCS and VM production

 \rightarrow In presence of a hard scale, (almost) fully calculable in pQCD

→ Is the hard scale present?

-> Exclusive final state

 \rightarrow Can we approximate as $\sigma \sim |x \ g(x, Q^2)|^2$

→ Can we constrain Generalized Parton Distributions (GPDs)?

Deep Virtual Compton Scattering

DVCS: *t* **slope and Beam Charge Asymmetry**

New H1 measurement based on 291 pb^{-1} of HERA II data (e^+ and e^-).

• t slope measured as a function of Q^2

 $b(Q^2) = A \left(1 - B \log(Q^2/2) \right)$

A and B fitted to: $A = 6.98 \pm 0.54 \text{ GeV}^{-2}$ $B = 0.12 \pm 0.03.$

 \Rightarrow Similar behaviour with VM using the scale $Q^2 + M_{VM}^2$

• First DVCS BCA measured at HERA.

$$BCA \equiv \frac{\sigma(e^+p) - \sigma(e^-p)}{\sigma(e^+p) + \sigma(e^-p)} \sim p_1 \cos(\Phi)$$

DVCS: QCD interpretation

• correct Q^2 dependence of the propagator and of b in the cross section:

$$S = \sqrt{\frac{\sigma_{DVCS} \ Q^4 \ b(Q^2)}{(1+\rho^2)}}$$

 \bullet skewing factor: around 2

$$R = \frac{\mathcal{I}m \ A(\gamma^* p \to \gamma p)}{\mathcal{I}m \ A(\gamma^* p \to \gamma^* p)}$$
$$= \frac{4\sqrt{\pi} \ \sigma_{DVCS} \ b(Q^2)}{\sigma_T(\gamma^* p \to X) \ \sqrt{(1+\rho^2)}}$$

 \Rightarrow important skewing factor

 $\Rightarrow Q^2$ evolution close to the one of DIS (pure DGLAP)

- Low mass $(\rho, \phi, \omega; M_V^2 \simeq 1$ GeV²): no pert. scale \rightarrow weak energy dep. (soft regime)
- High mass $(J/\psi, v)$: pert. scale \rightarrow strong energy dep. (hard regime)
- similar to F_2 (i.e. the gluon) qualitatively

Q^2 evolution of light vector meson Production

Q^2 evolution of light vector meson Production

 σ_T contains large dipole configuration \Rightarrow non-pert. contribution

 σ_L small dipole configuration \Rightarrow pert.

- b reflects the transverse size of the interaction
- Does b(Q²) reflects the different evolution of q and g in transverse direction.
 Universal(?) behaviour for Q² + M_V² scale

Inclusive and semi-inclusive processes

- \rightarrow gluon radiation are allowed (controlled by β)
 - → how does it compare to DIS?
- \rightarrow We can probe the Pomeron structure
 - → diffractive parton distributions (DPDF)
 - \rightarrow are DPDF universal?

Factorisation Properties

QCD Hard Scattering Fact.

Regge Factorisation

$$\sigma_{\text{DIS}}^{\text{Dif}} \sim f_q^D(x_{I\!\!P}, t, x, Q^2) \otimes \hat{\sigma}_{\text{pQCD}}$$

ity distributions for particular $x_{I\!\!P}, t$. DGLAP applicable for Q^2 evolution.

Rigorous for leading Q^2 dependence but not in hadron-hadron collisions

$$f_q^D(x_{I\!\!P}, t, x, Q^2) = f_{I\!\!P/p}(x_{I\!\!P}, t) \cdot q_{I\!\!P}(\beta, Q^2)$$

Diffractive parton densities factorise into "pomeron flux factor" and "pomeron parton densities"

 $I\!\!P \text{ flux factor from Regge theory } \dots$ $f_{I\!\!P/p}(x_{I\!\!P},t) = \frac{e^{Bt}}{x_{I\!\!P}^{2\alpha(t)-1}} \quad \text{where } \dots$ $\alpha(t) = \alpha(0) + \alpha' t$

No firm basis in QCD

BARYONS 2007 - L.Favart - p.15/25

precision in best region:5%(stat), 5%(syst), 6%(norm)

$$\alpha_{I\!\!P}(0) = 1.150 \pm 0.009 (\exp) \pm 0.039 (\th)$$

- No Q^2 dependence observed
- larger than soft Pomeron $\alpha_{I\!\!P}(0) = 1.08$

- smaller than inclusive DIS $\alpha_{\mathbb{P}}(0) = 1 + 0.048 \log(Q^2/0.292)$

BARYONS 2007 - L.Favart - p.16/25

NLO QCD fit: H1 Measurement

QCD Fit Technique:

- factorize $f(x_{I\!\!P})f(z,Q^2)$
- Singet Σ and gluon g
- NLO DGLAP evolution

 $\frac{1}{f_{I\!\!P/p}} \frac{\partial \sigma_r^D}{\partial \ln Q^2} \sim xg(x) \otimes \alpha_s \otimes P_{qg}$

- parametrised at $Q_0^2 = 3 \text{ GeV}^2$
- Fit data for $Q^2 \ge 8.5 \text{ GeV}^2, \, \beta < 0.8, \, M_X > 2 \text{ GeV}$
- Two stable solutions: Fit A and Fit B

PDF's of Diffractive exchange

- z is the fract. mom. of the parton in $I\!\!P$
- Σ well constrained
- a lot of gluons (75 \pm 15 % of mom.)

• New ZEUS inclusive diffraction measurements: \Rightarrow LRG, 45.4 pb⁻¹, 2000 (e⁺) data.

• New ZEUS inclusive diffraction measurements: \Rightarrow using Leading Proton Spectrometer (32.6 pb⁻¹) 2000 (e⁺) data.

Ratio of Diffractive to inclusive cross-sections

- For $M_X > 2$ GeV: flat in W
 - \rightarrow same W dependence as σ_{tot}
 - → Not consistent with naive 2 gluon exchange:

$$R = \frac{|x \ g(x,Q^2)|^2}{x \ g(x,Q^2)} = x \ g(x,Q^2)$$

 $M_X > 8$ GeV: no Q^2 dependence \rightarrow same DGLAP evolution

 $\rightarrow \gamma^*$ sees: 1 gluon that can radiate

• If $M_X \searrow, \beta \nearrow \rightarrow \gamma^*$: more and more of the exchanged object (2 g)

• $M_X < 2$ GeV (large β): falling with W

- contribution of Vector Meson production (higher twist)
- \rightarrow no g radiation allowed
- → "closed" gluon object

Test of QCD factorisation: H1 Dijet

Test of QCD factorisation: Dijet and Charm

• QCD factorization works for Dijet and Charm in Diff. with $Q^2 > 4 \text{ GeV}^2$

BARYONS 2007 - L.Favart - p.22/25

Factorisation breaking at the Tevatron

CDF measurement of the diffractive dijet production (using ratio SD/ND):

• The prediction based on diffractive PDF's extracted at HERA are one order of magnitude above the measures cross section!

- same to factorisation breaking in soft diffraction (Tevatron RUN I).
- also seen in W&Z production (sensitive to quark) and J/Ψ and *b*-mesons (sensitive to gluons)

• Factorization not expected to hold in *pp*. Violation of factorization understood usually in terms of (soft) rescattering corrections of the spectator partons

But other approaches exist...

HERA: Factorisation test: Dijet in Photoproduction

Real photon $(Q^2 \simeq 0)$ can develop a hadronic structure

BARYONS 2007 - L.Favart - p.24/25

Conclusion

- Improved precision in DVCS and VM production measurements.
- Sensitivity to very low x gluon density and parton correlations (GPDs).
- Many measurements of inclusive diffraction at HERA.
- Good agreement between methods and Collaborations.
- The partonic structure of the exchanged object in diffraction has been measured with improved precision.
- Diffractive parton distributions can be factorised in DIS regime (large Q^2) in $\gamma^* p$ interactions
- Photoproduction case needs clarifications
- Rescattering corrections in p p
- Still many HERA results to come...

Back-up Slides

Regge factorisation: β Dependence of F_2^D

Does Regge factorisation work ?

i.e. is $F(\beta, Q^2)$ dependent of $x_{I\!\!P}$ after factoring out the flux dependence ?

$$f_{I\!\!P/p}(x_{I\!\!P},t) = \frac{e^{Bt}}{x_{I\!\!P}^{2\alpha(t)-1}}$$

Take experimentally measured $B, \alpha(0)$

Regge factorisation holds !

Measures parton density over wide β range.

Factorisation breaking at the Tevatron

Colour Dipole approach

- Dominated by $(q\bar{q}g)_L$ for $\beta < 0.1$
- Dominated by $(q\bar{q})_T$ and $(q\bar{q})_L$ for $\beta > 0.1$

•
$$\beta \rightarrow 1$$
 -> exclusive final state