

Searches Before LHC

a snapshot

Cristinel DIACONU

Centre de Physique des Particules de Marseille

Centre de Physique des Particules de Marseille and Deutsches Elektronen Synchrotron Hamburg

- Introduction
- Standard Model and Higgs
- Signature based searches
- Generic searches
- Low energy results
- Conclusions

June 1st, 2007, Four Seas Conference, Iasi, Romania

Colliders at Fermi Scale

before LHC (pp, 14 TeV)

320 GeV

Low energy contraints can also access these scales: precision can beat decoupling

LEP/SLC

ALEPH, DELPHI, L3, OPAL L~=900 pb⁻¹/expt.

SLC (SLD): polarized e⁺e⁻ at Z peak

HERA

HERA:

p (920 GeV) e (27.6 GeV)

318 Ge

- HERA 1: 1992-2000 ~120 pb⁻¹/expt
- HERA 2: 2003-2007 luminosity upgrade

H1 Harvest at HERA 1+2: ~0.5fb⁻¹

- ~200 pb⁻¹ e⁻p
- ~300 pb⁻¹ e⁺p

Since April 2007: Low Energy Run E_p=460 GeV

HERA program entering an exciting period: final analyses

4

Tevatron

-> pp collider: CDF, D0 Run I E_{cm}=1.8 TeV 130 pb⁻¹/exp.(phys.)

Run II E_{cm}=1.96 TeV

Analyses with 1fb⁻¹, a lot more to go still

Standard Model Status

- Consistency check of the SM based on high precision measurements
- More than 1000 data points combined in 17 observables calculated in the SM from:
 - α_{em} (precision 3·10⁻⁹) the critical part $\Delta \alpha_{had}$ (from e+e-->hadrons)
 - G_{F} (precision 9.10⁻⁶) (->MW)
 - M_z (precision 2.10⁻⁵) from lineshape (LEP-1)
 - $\alpha_s(M_Z)$ (precision 2.10⁻²) hadronic observables
 - \mathbf{M}_{top} and \mathbf{M}_{Higgs}
- Zfitter 6.42, precision at $2 \text{ loop} (M_w, \sin^2 \theta_w)$ 3-loop for ρ

	Measurement	Fit	Omea	^s –O ^{fit} ∣/σ ^{meas}
(5)			0 .	1 2 3
$\Delta \alpha_{had}^{(3)}(m_Z)$	0.02758 ± 0.00035	0.02768	-	
m _z [GeV]	91.1875 ± 0.0021	91.1875		
Γ_{Z} [GeV]	2.4952 ± 0.0023	2.4957	-	
$\sigma_{\sf had}^{\sf 0}$ [nb]	41.540 ± 0.037	41.477		
R _I	20.767 ± 0.025	20.744		
A ^{0,I}	0.01714 ± 0.00095	0.01645		
$A_{I}(P_{\tau})$	0.1465 ± 0.0032	0.1481		
R _b	0.21629 ± 0.00066	0.21586		
R _c	0.1721 ± 0.0030	0.1722		
A ^{0,b}	0.0992 ± 0.0016	0.1038		
A ^{0,c}	0.0707 ± 0.0035	0.0742		
A _b	0.923 ± 0.020	0.935		
A _c	0.670 ± 0.027	0.668	i	
A _I (SLD)	0.1513 ± 0.0021	0.1481		
$\sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314		
m _w [GeV]	80.398 ± 0.025	80.374		
Г _w [GeV]	$\textbf{2.140} \pm \textbf{0.060}$	2.091		
m _t [GeV]	170.9 ± 1.8	171.3		
			0 -	1 2 3

CDF M_w : 80413 ± 48 MeV

Tremendous progress in direct mesurements at Tevatron

Higgs particle may be round the corner (or not)

M^{higgs}=76+33-24 GeV M^{higgs}<144 (182) GeV

Direct Higgs Searches at Tevatron

Event with isolated e or <u>u</u> and P₊^{miss}

H1 HERA 1 (118 pb⁻¹, mainly e⁺p) P_T^x>25 GeV 11 (Data) / 3.5±0.6 (SM) (3σ)

Evidence for W production at HERA Continue to observe events at high P_T^X =>Look more differentially in e⁺p/e⁻p data samples

H1 Results (e and μ) e⁺p vs. e⁻p data

Different observations

in <mark>e⁺p</mark> and <mark>e⁻p</mark>.

ZEUS do not support this observation

$P_T^X > 2$	25 GeV	electrons Data/SM	MUONS Data/SM	
H1	294 pb ⁻¹	11/4.7±0.9	10/4.2±0.7	3sigma
ZEUS	228 pb ⁻¹	1/3.2±0.4	3/3.1±0.5	

Events with leptons and photons

Di-leptons searches (Tevatron)

Two electrons with $P_T > 25 \text{ GeV}$

Multilepton events at HERA

New Result

Full HERA statistics

Search for lepton-boson resonances

Excited electrons(Tevatron)

∧=M(e*) M(e*)<800 GeV excluded @ 95% CL (CI formalism)

Multi-leptons at Tevatron

Trileptons: very small background spectacular signature

Can come from SUSY cascades

CDF: 14 topologies (e,µ, tracks)

	3lep	e C	e+l EM	ee+ plu	-l g	eµ+l		μμ+l high p _T	µe+l CEM		µe+l plug	e tr	e + ack	μμ Iow	+l PT
 (Lumi pb-1)	10	034	954	4	1034		745	745		680	1	013	97	6
]	Bkgd	0.4 0	44 ± .08	0.34 0.1	. ± 0	0.28 ± 0.09	E	0.64 ± 0.18	0.42 ± 0.08	(0.36 ± 0.07	0. 0	97 ±).28	0.42 0.1	2 ± 12
]	Data	1	0	.0		0		1	0		0		3	1	
	LS le	ep	ee	LS	e	e _{si} LS		e _{si} e _{si} LS	e _{si} µ LS		eµ Ls	5	μμ	LS	
	Lum (pb-1	ni 993 993		993	993		971		971		1087				
	Bkg	d	0.1 0.	0 ± 10	0	0.50 ± 0.30		1.30 ± 0.30	1.70 ± 020		2.30 ± 0.50		0.9 0.1	0 ± 10	
	Dat	a		1		2		1	4		4	1			

D0:4 topologies

	Lumi (pb ⁻¹)	Bkgd	Data	
eel	1000	0.76 ± 0.67	0	
μμΙ	1100	0.32 ± 1.34	2	
<u>µel</u>	1100	$\boldsymbol{0.94 \pm 0.40}$	0	
LS µµ	1000	1.1 ± 0.4	1	

Inclusive techniques deployed Very low number of events No significant deviation found

LS=likesign

SUSY constraints from multi-leptons

Search for lepton-jet resonances

Leptoquarks at Tevatron

LO

LO

n ng n

Complex particle identification: LQ 2nd and 3rd generations

Single production at Tevatron

PLB 647, 74 (2007)

single production: gain for larger couplings

Mass-coupling limits

M>214 GeV @95% CL

M>317 GeV @ 95% CL

Multi-photon events at Tevatron

Motivated by the anomalous $ee\gamma\gamma E^{t}_{miss}$ event (run I)

Good agreement with the Standard Model

	γγγ	γγ ⋭ _Τ	үүе	γγμ
SM	2.2	0.24	6.8	0.7
Data	4	1	3	0

General Searches

New result Full HERA II

H1 General Search, HERA II e⁺p (178 pb⁻¹) •Search for isolated particles at high P₊ Events 10⁵ H1 Data (prelim.) •Electrons .Photons, Muons, Hadronic Jets, Neutrinos 10 SM 10^{3} •Unique phase space: 10² **P₊ >20 GeV** 10 L **10°<θ<140°** 1 D0, PRD64, 012004 (2001) H1, Phys Lett B602 (2004) 14 10 •Investigate Mass and ΣP_{T} 10⁻² j-j-v e-j-v μ-j-v j-j-γ e-j-γ <u>-</u> e-j-j -j-j-j-j-j-j 2 4 7 n-n Ξ Ē e e <u>-</u> β Ξ÷ Ξ 4 •Statistical Analysis (search for deviations) H1 General Search, HERA II e p (159 pb⁻¹) H1 General Search, HERA II e⁺p (178 pb⁻¹) 10⁵⊧ Events Number of Event Classes M_{all} Scan H1 Data (prelim.) 10⁴ H1 Data (prelim.) SM **MC Experiments** 10 10^{3} F 10² v jet 10 ᄩ 1 10 Ē -log₁₀ P 10^{-2} Ō 0.5 1.5 2.5 2 1 e-e-e **e-j**-v μ-j-v **e-**j-γ i-i-i e-i-i i-i-v **9** e-ee-j-j-j j-j-j-v Ξ 2 2-0 9-9 n'-n' **e-**√ Ŧ 2 3 5

Vista and Sleuth @ CDF

D0 also recently involved

Entries 344 CDF Run II Preliminary (927 pb⁻¹) Underflow 0 Overflow 0 80 Vista Final States 60 40 20 -2 0 2 -6 σ

but phase space adjusted on background

Similar general search,

Experimental effort is huge, but worth Security belt for the unexpected

Low Energy, high precision

Beat Decoupling?

$$a_{\mu} = (g_{\mu} - 2)/2$$

A celebration: positron is 75

Dirac equation 1928

Positron discovery Anderson 1932

Heisenberg (1960's)*:

"Up till that time, I had the impression that, in quantum theory, we had come to a harbour. [This discovery] threw us into the sea again."

LHC -> Four Seas?

Conclusions and outlook

- Standard Model in best shape ever
- Present fronteer colliders continue to explore new teritory before LHC
 - In the last 2 year the luminosity at HERA and Tevatron x2
 - HERA data in the can, scrutinise, discover, report
 - Tevatron still large factors (~5-8) to go, high hopes
- The start of the LHC will be an interesting period,
 - a surprise can occur however before

Let's call it 'CHEF'S SURPRISE."