

Recent quarkonia results and prospects from HERA

Gated luminosities: ZEUS example

• 20+50+70 = 140 pb⁻¹ for HERA I

• 40+60+160+(160 expected) = 420 pb⁻¹ for HERA II

 \Rightarrow 560 pb⁻¹ for HERA I + II

HERA variables

DIS regime: scattered lepton in the main detector

PHP regime: scattered lepton NOT in the main detector $\Leftrightarrow Q^2 < 1 \text{ GeV}^2$

What do we see in the detectors ?

- inelastic
- PHP
- direct γ
- high $p_t J/\psi$, $p_t (J/\psi) \sim 9.5 \text{ GeV}$
- the hadronic system recoiling against the $J/\psi\,$ shows up as a jet

Inelastic J/ ψ differential cross sections in

- □ HERA initial state simple enough for a direct γ NLO CSM prediction for $p_t(J/\psi) > 1$ GeV
- \Box at low z, resolved γ , $g_p g_{\gamma} \rightarrow J/\psi$ g like at TEVATRON (but at smaller s^{hat}!)
- theoretical uncertainties does not allow strong conclusions ...
- and a small function of the same itela burning sites and burned

Inelastic J/ψ differential cross sections in PHP

these measurements can be improved a lot, is the same true for the theory ?

□ at HERA mostly $\psi(2S) \rightarrow J/\psi X$

 \Box B decays, χ_c radiative decays, ... much smaller than at the TEVATRON

J/ψ feed

... and what about the DIS regime ?

□ smaller cross section but higher expected sensitivity

 \Box Q² > 2 GeV² and p_t(J/ ψ) > 0 GeV

theoretical uncertainties reduced by using $1/\sigma d\sigma/dO$

like in PHP, the only distinctive variable is z but what about higher orders / resummation?

data can be improved substantially

Inelastic J/ψ differential cross sections in DIS

□ $Q^2 > 2 \text{ GeV}^2$ □ $p_t^*(J/\psi) > 1 \text{ GeV}$

ZEUS and H1 data are in good agreement

• the $p_t^*(J/\psi)$ cut is not changing the z picture

Decay angular distributions in the J/ψ rest frame (\equiv helicity)

 \Box simplest example first: assume that all J/ψ originate from the spin-less state ${}^{1}S_{0}{}^{(8)}$ then the J/ψ will be unpolarized and the µ decay angular distributions will be the ones of a state with spin 1

 \Box in general the μ decay angular distribution in the J/ ψ rest frame is parameterized as

 $d^2\sigma/d\Omega dy \propto 1 + \lambda(y) \cos^2 \theta + \mu(y) \sin 2\theta \cos \varphi + \frac{1}{2} \nu(y) \sin^2 \theta \cos 2\varphi$

where y stands for a set of variables (z and $p_t(J/\psi)$ are good candidates)

- λ , μ , ν are related to the different color-octet matrix elements involved
- ${}^{\bullet}$ $\lambda,\,\mu,\,\nu$ also depend on the definition of a coordinate system

main advantage:

"Since the decay angular distribution parameters are normalized, the dependence on parameters that affect the absolute normalization of cross sections, such as m_c , α_s , μ_R , μ_F and parton distribution, cancels to a large extent and does not constitute a significant uncertainty"

\Rightarrow main source of theoretical uncertainties gone

main disadvantage:

for every y bin we have to fit a distribution

 \Rightarrow unlikely requires LARGE statistics

J/ψ helicity measurements in PHP

- statistically not yet significant
- BUT expect a new preliminary by ZEUS based on 241 pb⁻¹ at ICHEP06
- asymptotically data stat. can be improved by a factor ~ 5

J/ψ helicity measurements in PHP

statistically not yet significant although ...

would be nice if the experimental errors could be halved ...

241 pb⁻¹ / 114 pb⁻¹ > 2 hence at ICHEP06 you may already have $1/\sqrt{2}$

$d\sigma(\gamma p \rightarrow J/\psi p)/d|t|$

soft |t| spectra both in the PHP and DIS regimes

simple exponential dependence, e^{bt}, slope b may change with W and Q²

predictions of a QCD inspired model (Frankfurt and Strikman) disfavored by the data

Regge phenomenology and Pomeron exchange lead to a

 $W^{4(\alpha(< t>)-1)}$

dependence of the cross section

 α (t): effective Pomeron trajectory

far away from the Soft Pomeron expectation \Rightarrow hope for QCD models

$d\sigma(\gamma p \rightarrow J/\psi p)/dt \propto e^{bt}$ in W bins

the slope b of the exponential |t| dependence may change with W and Q^2

$\sigma(\gamma p \rightarrow J/\psi p) vs W$

the simple dependence

 $\sigma \, \propto W^\delta$

reproduces the data pretty well

QCD based predictions are very sensitive to the input proton gluon distribution, g_p

however these prediction have to be normalized to the data, by factors ranging between 1.5 and 2.8, and hence only the slope of the g_p can be checked against the data

it would be clearly nice to have more powerful QCD prediction ...

Conclusions

quarkonia physics has many interconnections between e p / p p and e e machines

 \downarrow likely we are on the right track but 30 years after the ψ discovery we do not yet know how it is produced ... a complete picture is still missing ...

4 a lot of exchange between theorist and experimentalist is mandatory in order to make progress ...and I hope this HQW could be very fruitful in this respect

↓ if you believe HERA has to measure d σ (ep→ J/ψX)/d(something) please let us know NOW ... in 1 year time it may be too late !!!

 \clubsuit ... hopefully will also have some Υ measurements with the full HERA stat.