Xavier Janssen - Université Libre de Bruxelles

On behalf of H1 and ZEUS Collaborations

Deeply virtual Compton scattering and vector mesons production at ZEUS and H1 experiments

2nd Workshop on the QCD Structure of the Nucleon

Rome, Italy, 12th-16th June, 2006

Deeply Virtual Compton Scattering

$e + p \longrightarrow e + \gamma + p$

• Factorization theorem:

Diffraction: $e + p \rightarrow e + X + Y$

- First Diffractive process
 fully calculable in QCD
- No VM wave function uncertainty
 - Access to Generalized Parton Distributions (GPDs)

Deeply Virtual Compton Scattering

$e + p \longrightarrow e + \gamma + p$

- Factorization theorem:
 - First Diffractive process
 fully calculable in QCD
- No VM wave function uncertainty
- Access to Generalized Parton Distributions (GPDs)
- Q^2 : virtuality at which the proton is probed
- W : energy in the $\gamma^* p$ center of mass system
- t : square of the 4-momentum transfer at the proton vertex

Deeply Virtual Compton Scattering

$e + p \longrightarrow e + \gamma + p$

- Factorization theorem:
 - → First Diffractive process fully calculable in QCD
- No VM wave function uncertainty
- Access to Generalized Parton Distributions (GPDs)

 Interference with Bethe-Heitler which is a pure QED process.

 $(\rightarrow$ Access to Amplitudes in Asymmetries)

DVCS - QCD predictions

DVCS amplitude factorise in a pQCD calculable hard scattering part and a non-peturbative part describing the internal dynamics of the proton

 ξ - "Skewedness", i.e. momentum difference between emitted and absorbed parton

\rightarrow need to use the GPD formalism to describe DVCS

(GPDs encodes info about transverse motion of partons and about their correlations)

 $Q^2 >> 1 \text{GeV}^2$ $-t << Q^2$

DVCS - QCD predictions

4 types of GPD:

proton helicity conserved

allow proton helicity flip

unpolarized $H^{q,g}(x,\xi,t;\mu^2)$ $E^{q,g}(x,\xi,t;\mu^2)$ polarized $\tilde{H}^{q,g}(x,\xi,t;\mu^2)$ $\tilde{E}^{q,g}(x,\xi,t;\mu^2)$

At low x, DVCS is mainly sensitive to $H^g(x,\xi,t;\mu^2)$

NLO leading twist calcl. by A. Freund and M. McDermott Eur. Phys. J. C23 (2002) 651

 $\begin{array}{l} \mathsf{DGLAP \ region} \ (|x| > \xi): \\ H^{q,g}(x,\xi,t;\mu^2) & \xrightarrow[\xi \to 0]{} q(x), g(x) \\ \tilde{H}^{q,g}(x,\xi,t;\mu^2) & \xrightarrow[\xi \to 0]{} \Delta q(x), \Delta g(x) \end{array}$

ERBL region ($|x| < \xi$):

Simple analytic functions

t dependence: ξ and Q^2 dependence: parametrised as e^{-t}

generated dynamically by the evolution equations

DVCS - Data Selection

		H1	ZEUS	
	$E_1 >$	$15 \mathrm{GeV}$	$10 \mathrm{GeV}$	
	$p_{T_2} >$	1 GeV (2 G	eV)	
acomplo	$E_2 >$		3 GeV	
y sample	$E_3 <$	$0.5 \mathrm{GeV}$	$0.2 {\rm GeV}$	
DVCS + Bethe-Heitler	elast.	no track, Fwd	no track	
	Lumi + 2004:	$46.5 \ pb^{-1} \ (e^+)$ 39.7 pb$^{-1} \ (e^+)$	95 (e ⁺) pb^{-1} 16 7 (e ⁻) pb^{-1}	
			< p	
QCDN06, Rome, 12-16 June 2006			R Xavier Janssen – p.5	

DVCS - Data Selection

			H1		ZEU	Ĩ S
		$E_1 >$	$15 \mathrm{GeV}$	r	10 G	eV
Control sample Mainly Bethe-Heitler		$p_{T_2} >$	$1 \mathrm{GeV}$	(2 Ge	eV)	
		$E_2 >$			3 GeV 0.2 GeV no track	
		$E_3 <$	$0.5 {\rm GeV}$			
		elast. no track, Fwd		Fwd		
Manny Deti		Lumi + 2004 :	$46.5 \ pb^{-1}$ 39.7 pb^{-1}	(e ⁺) (e ⁺)	$95 (e^+)$ 16.7 (e ⁻⁾	pb^{-1}
					<	þ
QCDN06, Rome, 12-16 June 2006				7	R	Xavier Jans

DVCS - Control Plots

• Control sample:

Well described by MC

→ Detector understood

- γ sample:
 Good description by
 BH + DVCS MC
 - \Rightarrow DVCS cross section:
 - 1. Subtract Bethe-Heitler ($\int d\phi$ Interf. = 0)

2. $\sigma_{ep} \longrightarrow \sigma_{\gamma^* p}$ (/ flux factor)

Combined fit to H1 99-00 and H1 2004 data : $\sigma(Q^2) \propto (1/Q^2)^n$ \longrightarrow statistical error on *n* parameter decreased

DVCS - W dependence

 \rightarrow statistical error on δ parameter decreased

DVCS - t dependence

Combined fit to H1 99-00 and H1 2004 data : $d\sigma/dt \propto exp(-bt)$ \longrightarrow statistical error on *t* slope *b* decreased

DVCS - Comparison to QCD predictions

Comparison to NLO QCD:

- Band width reduced by b slope measurement
- Good description by NLO QCD calculations.
- Sensitivity to GPDs parametrization
- b kept constant with Q^2
- no need for intrinsic skewing

DVCS - Comparison to QCD predictions

Comparison to NLO QCD:

- Band width reduced by b slope measurement
- Good description by NLO QCD calculations.
- Sensitivity to GPDs parametrization
- b kept constant with Q^2
- no need for intrinsic skewing

DVCS - ... and to Color Dipole Models

In proton rest frame:

Favart-Machado:

GBW Saturation model

Eur. Phys. J. C29 (2003) 365

→ Describe shape and norm. when including DGLAP evolution (BGBK) • γ^* fluctuates in $q\bar{q} + q\bar{q}g + \dots$

 $\mathcal{A} = \int dR^2 \ dz \ \Psi^{in} \ \sigma_{dipole} \ \Psi^{out}$

- Ψ^{in} and Ψ^{out} calculable
- σ_{dipole} modeled

DVCS - ... and to Color Dipole Models

In proton rest frame:

Favart-Machado:

GBW Saturation model

Eur. Phys. J. C29 (2003) 365

→ Describe shape and norm. when including DGLAP evolution (BGBK) • γ^* fluctuates in $q\bar{q} + q\bar{q}g + \dots$

 $\mathcal{A} = \int dR^2 \ dz \ \Psi^{in} \ \sigma_{dipole} \ \Psi^{out}$

- Ψ^{in} and Ψ^{out} calculable
- σ_{dipole} modeled

VECTOR MESON PRODUCTION

 $e + p \rightarrow e + VM + p \text{ (or } Y)$

Regge Theory = Soft *I*Pomeron exchange

$$\sigma \propto \left(\frac{W}{W_0}\right)^{4(\alpha_{I\!\!P}(t)-1)}$$
$$\alpha_{I\!\!P}(t) = 1.08 - 0.25|t$$

Works for light VM at low Q^2 (and low t)

Vector Mesons: Perturbative QCD Models

Assume Factorization

- \iff Requires hard scale: Q^2 , m_q or t
- Requires endpoints cancellation mechanism to avoid divergence

Exchange of \geq 2 gluons: $\sigma \propto (xG(x,Q^2))^2$ Steep rise of $xG(x,Q^2)$ No (or little) shrinkage

Vector Mesons : Photoproduction Overview

Photoproduction ($Q^2 = 0 \text{ GeV}^2$)

Soft energy dependence

Hard energy dependence

$$\Rightarrow \text{Quark mass } (m_c)$$

= hard scale

Vector Mesons : Elastic Rho Production

Transition with Q^2 to a hard dependence in W

$$\longrightarrow Q^2$$
 = hard scale

Exclusive ρ^0 **Photoproduction**

electron not detected:

 $Q^2 < 4 \text{ GeV}^2$ $< Q^2 >= 0.01 \text{ GeV}^2$

•
$$W = \sqrt{2E_p(E_\rho - P_{z,\rho})}$$

 $20 < W < 90 \text{ GeV}$

•
$$t = -P_{t,\rho}^2$$
 $|t| < 3 \text{ GeV}^2$

- Previous HERA measurements:
 - H1: 93 data, 358 events, 20 $nb^{-1} \longrightarrow new$ measurement needed
 - ZEUS: no level arm in W, combined fit with fix target data $\rightarrow \alpha(t) = (1.096 \pm 0.021) + (0.125 \pm 0.038) t$

⁰ Photoproduction - Data Selection

- Threshold: $p_t > 100 \text{ MeV}$
- Selection on nr of tracks, charge
 - \rightarrow 1 Million triggered events in 2005 (570 pb⁻¹)

Offline Event Selection:

- Vertex within 25 cm of nominal IP
- 2 tracks, opposite charge
- tracks: $p_t > 200 \text{ MeV}$, $20^\circ < \theta < 160^\circ$
- No electron detected
- No other particles

ρ^0 PhP - Corrected Mass Distribution

 \longrightarrow Obtain number of ρ^0 in each W - t bin (for $2m_{\pi} < M_{\pi\pi} < m_{\rho} + 5\Gamma_{\rho}$)

 \longrightarrow Extract σ_{gp} cross sections in each W - t bin

 $\rho^0 \, PhP - Elastic Cross Section$

H1 PRELIMINARY

Good agreement with previous results from H1, ZEUS and OMEGA (not shown)

Fit to H1 data: $\frac{\mathrm{d}\sigma}{\mathrm{dt}} \propto \frac{W}{W_0}^{4\,(\alpha(t)-1)}$

→ Pomeron trajectory

Elastic ρ^0 **PhP** - Pomeron trajectory

H1 PRELIMINARY

$$\alpha(t) = \alpha_0 + \alpha' t$$

 $\rightarrow \alpha_0 = 1.093 \pm 0.003 \substack{+0.008 \\ -0.007}$ $\rightarrow \alpha' = 0.116 \pm 0.027 \substack{+0.036 \\ -0.046} \text{ GeV}^{-2}$

• $\alpha^{'}$ smaller than 0.25 GeV $^{-2}$

Good agreement with fit to ZEUS and fix target data:

 $\begin{array}{l} \alpha_{0} = 1.096 \pm 0.021 \\ \alpha^{'} = 0.125 \pm 0.038 \; \mathrm{GeV^{-2}} \end{array}$

Exclusive ϕ **Production in DIS**

Nucl. Phys. B 718 (2005) 3-31

98-2000 data:

- $\mathcal{L} = 65.1 \text{ pb}^{-1}$
- Select $\phi \longrightarrow K^+ K^-$
- 3642 events in range $1.01 < M_{KK} < 1.04$ GeV

Kinematic range:

ZEUS

- $2 < Q^2 < 70 \text{ GeV}^2$
- 35 < W < 145 GeV
 (→ Q² dependent)
- $|t| < 0.6 \,\,{
 m GeV^2}$

Substracted backgrounds:

- non-resonant decreasing from 18 % at $Q^2 = 2.4 \,\mathrm{GeV^2}$ to 5 % at $Q^2 = 13 \,\mathrm{GeV^2}$
- Proton dissociation: $(7 \pm 0.4 \substack{+4.2 \\ -2.8})\%$

ϕ in DIS - Q^2 and W dependence

- Fit $\sigma_{\phi} \propto W^{\delta} \longrightarrow \delta \sim 0.4 \longrightarrow \text{no } Q^2$ dependance of δ
- rise of δ with $Q^2 + M_{VM}^2$ observed in global VM picture
- ρ , ϕ : tansition from soft to hard regime observed

ZEUS

- Fit $d\sigma/dt \propto \exp(-\mathbf{b}|\mathbf{t}|)$ for $W = 75 \,\mathrm{GeV}$
- No Q^2 dependence of **b** observed within errors
- Data suggest scaling with $Q^2 + M_{VM}^2$ in global VM picture zeus

- comaparison with MRT and FS04 pQCD models
 - different assumptions on gluon densities

JHEP 0412, 052 (2004) Phys. Rev. D62, 14022 (2000) ZEUS

ZEUS

Elastic J/ψ Production

hep-ex/0510016

- Charm q mass as hard scale
 - \rightarrow pQCD valid in photoproduction
- Interplay with second hard scale Q^2 ?
- Sensitivity to GPDs at low x
 - \rightarrow constrain on gluon density ?

 $\begin{array}{l} \mbox{Photoproduction} < Q^2 >= 0.05 \ {\rm GeV}^2 \\ \rightarrow J/\psi \rightarrow \mu^+ \mu^- \mbox{ for } 40 < W < 160 \ {\rm GeV} \\ \rightarrow \mbox{Dedicated } _{J/\psi \rightarrow e^+e^-} \ {\rm high} \ W \ {\rm analysis} \\ \rightarrow 40 < W < 305 \ {\rm GeV} \end{array}$

Electroproduction ($J/\psi \rightarrow \mu^+\mu^-$ Only)

- $2 < Q^2 < 80 \text{ GeV}^2$
- 40 < W < 160 GeV

Elastic J/ψ Production

hep-ex/0510016

- Charm q mass as hard scale
 - \rightarrow pQCD valid in photoproduction
- Interplay with second hard scale Q^2 ?
- Sensitivity to GPDs at low x
 - \rightarrow constrain on gluon density ?

Photoproduction $\langle Q^2 \rangle = 0.05 \text{ GeV}^2$ $\rightarrow J/\psi \rightarrow \mu^+\mu^- \text{ for } 40 < W < 160 \text{ GeV}$ $\rightarrow \text{ Dedicated } J/\psi \rightarrow e^+e^- \text{ high } W \text{ analysis}$ $\rightarrow 40 < W < 305 \text{ GeV}$

Electroproduction ($J/\psi \rightarrow \mu^+\mu^-$ Only)

- $2 < Q^2 < 80 \text{ GeV}^2$
- 40 < W < 160 GeV

Elastic J/ψ - W dependence in PhP

- H1 and ZEUS data agree
- Fit $\sigma \propto W^{\delta}$ (H1 only):
 - $\delta = 0.75 \pm 0.03 \pm 0.03$
- Martin, Ryskin, Teubner : Phys Rev D62 (2000) 014033 $A = \int_{0}^{oo} \frac{dl_{T}^{2}}{l_{T}^{4}} \alpha_{s}(l_{T}^{2}) f(x, x', l_{T}^{2}) \Phi^{L,T}(..., l_{T}^{2})$ $x \neq x' \longrightarrow$ need GPDs $f(x = x', l_{T}^{2}) = \frac{\partial[(xg(x, q_{o}^{2})T(q_{o}^{2}, \mu^{2})]}{\partial q_{o}^{2}} \|_{q_{o}^{2} = l_{T}^{2}}$ + skewing ansatz

 \rightarrow Sensitivity to gluon at low x (?)

FMS: dipole model \longrightarrow OK JHEP 0103 (201) 045

• No Q2 dependence of δ within errors

 \rightarrow "Scale" is already hard, set by the charm quark mass

Fit: $\sigma \propto (Q^2 + M_{J/\psi}^2)^{-n}$ $\rightarrow n = 2.486 \pm 0.080 \pm 0.068$ \rightarrow in agreement with ZEUS

Fits:
$$d\sigma/dt \propto \exp(-b|t|)$$

 $Q^2 = 0.05 \quad b = 4.57 \pm 0.06^{+.11}_{-.18}$
 $Q^2 = 22.4 \quad b = 3.49 \pm 0.45^{+.49}_{-.33}$
 \rightarrow no Q^2 dependence within errors
 \rightarrow Universality with $Q^2 + M_{VM}^2$

Elastic J/ψ - Pomeron trajectory

PhP: α(t) = (1.224 ± 0.010 ± 0.012) + (0.164 ± 0.028 ± 0.030) GeV⁻² t
 DIS: α(t) = (1.183 ± 0.054 ± 0.030) + (0.019 ± 0.139 ± 0.076) GeV⁻² t
 → Similar trajectories within errors in PhP and DIS
 → PhP: 0 << α' << 0.25 GeV⁻²

QCDN06, Rome, 12-16 June 2006

Vector Mesons at Large |t|

VM photoproduction at large |t| proposed as test of BFKL

- Need $W^2 > |t| \rightarrow \sum_n \alpha_s^n \ln^n W^2/|t|$
- BFKL model by Forshaw et al.:
 - Free parameters: α_s^{BFKL} , Λ^2
 - Power like t dependence
 - Challenge is to describe both the *t* dependence and the helicity structure JHEP 0309 (2003) 008 and JHEP 0312 (2003) 002
- H1: ρ^0 PhP at large |t|
- 2000 data: $\mathcal{L} = 20 \text{pb}^{-1}$
- $75 < W < 95 \, {\rm GeV}$
- $1.5 < |t| < 10 \ \mathrm{GeV}^2$
- $M_Y < 5~{
 m GeV}$ (Y=proton remnant) Acc by Phys. Lett. B [hep-ex/0603038]

ZEUS: J/ψ PhP at large |t|

- 96-2000 data: $\mathcal{L} = 112 \text{pb}^{-1}$
- 50 < W < 150 GeV
- $1 < |t| < 20 \text{ GeV}^2$
- $M_Y < 30 \text{ GeV}$

- Approx. power-like behaviour supported by data
- BFKL predictions (with fixed α_s) describe reasonably the data

VM at Large |t| - W dependence

 J/ψ PhP at large |t|

- Fit $\sigma \propto W^{\delta}$; $\delta = 4(\alpha_{I\!\!P}(t) 1)$
- $\rightarrow \delta$ rise with |t|
- \rightarrow effective Pomeron trajectory:

$$\begin{aligned} \alpha(0) &= 1.153 \pm 0.048 \pm 0.039 \\ \alpha' &= -0.020 \pm 0.014 \pm 0.010 \text{ GeV}^{-2} \end{aligned}$$

ZEUS

VM at Large |t| - W dependence

 J/ψ PhP at large |t|

- Fit $\sigma \propto W^{\delta}$; $\delta = 4(\alpha_{I\!\!P}(t) 1)$
- $\rightarrow \delta$ rise with |t|
- \rightarrow effective Pomeron trajectory:

$$\begin{aligned} \alpha(0) &= 1.153 \pm 0.048 \pm 0.039 \\ \alpha' &= -0.020 \pm 0.014 \pm 0.010 \text{ GeV}^{-2} \end{aligned}$$

- DGLAP does not describe rise with W
- BFKL reproduces general behaviour of data

ZEUS

VM at Large |t| - Spin Density Matrix Elements

- Production & decay angles
- → 15 spin density matrix elements (SDME)
 - But only 3 accessible in PhP
- SDMEs = bilinear combinations on the helicity amplitudes

 $r_{kl}^{ij} \propto M_{\lambda_{VM}\lambda_{\gamma}} M_{\lambda'_{VM}\lambda'_{\gamma}}$

- No helicity flip: M_{++} / M_{--}
- Single flip: M_{+0} / M_{-0}
- Double flip: M_{+-} / M_{-+}
- s-channel helicity conservation (SCHC), i.e. $\lambda_{VM} = \lambda_{\gamma}$

 \longrightarrow All 3 SDMEs to be zero

VM at Large |t| - Dependence of SDMEs on |t|

• Small r_{00}^{04} value ($\sim 5\%$)

 $\rightarrow \rho$ meson mainly transverse

- Two-gluon model hugely overestimates r_{00}^{04} but BFKL gives a good description
- $r_{1-1}^{04} << 0 \rightarrow$ SCHC violation with double flip contribution
- $r_{10}^{04} > 0 \rightarrow \text{SCHC violation}$ with single flip contribution
- BFKL model fails to describe r_{10}^{04} (as well as Two-gluon)

CONCLUSION

First HERA-II DVCS cross sections versus Q^2 , W and t:

- H1 prelimary results in agreement with previous results
- t slope measurement \longrightarrow Constraint theory normalisation
- NLO QCD predictions based on GPDs in agreement with data
 - Sensitivity to different GPD models

Elastic ρ^0 photoproduction using the H1 Fast Track Trigger:

- Pomeron trajectory determined using data within one experiment
- α' significantly smaller than 0.25 ${
 m GeV^{-2}}$

Elastic ϕ and J/ψ production:

- ϕ : $\sigma \propto W^{\delta}$; $\delta \sim 0.4 \rightarrow$ between soft and hard regime
- J/ψ : $\sigma \propto W^{\delta}$; $\delta \sim 0.7 \rightarrow$ charm provide hard scale (at all Q^2)
- High sensitivity of elastic J/ψ to gluon at low x ?

Vector mesons photoproduction at large |t|

- $\bullet~W$ and t dependences are described by pQCD BFKL model
- BFKL model however fails to describe fully the helicity structure QCDN06, Rome, 12-16 June 2006
 Xavier Janssen - p.36