Structure Function Measurements at HERA

Benno List

UΗ

for the H1 and ZEUS Collaborations

Ĥ

Sino-German Workshop on Frontiers in QCD 21.9.2006

- Introduction
- Structure function measurements
- Structure function fits: parton densities and α_s
- Summary and outlook

Introduction

- Introduction
 - -HERA
 - -The ZEUS and H1 Detectors
 - -Kinematics
- Structure Function Measurements
- Structure Function Fits
- Summary and Outlook

27.5GeV electrons/positrons on 920GeV protons $\rightarrow \sqrt{s} = 318$ GeV 2 Collider experiments: H1 und ZEUS HERA-I: 16pb⁻¹ e⁻p, 120pb⁻¹ e⁺p HERA-II: ca. 500pb⁻¹, ca. 40% polarisation

Status of HERA-II

- HERA-I: 1992-2000: 16pb⁻¹ e⁻p, 120pb⁻¹ e⁺p
- Upgrade 2001-2002, slow startup
- HERA-II: 2003 July 2007 up to now: ~175pb⁻¹ e⁻p, 105pb⁻¹ e⁺p
- e+ running will continue for 6 more months, then 3 months low energy run

Lepton Polarization at HERA-II

- New HERA-II feature: Use spin rotators to produce <u>longitudinal</u> polarization in experiments
- Allows to measure polarization dependence of high- Q^2 processes:
 - Charged currents: limits on right-handed currents
 - Neutral current: γZ interference

ZEUS and H1

• Omni-purpose detectors: silicon tracking, drift chambers, calorimeter, muon system

Uranium-Scintillator calorimeter: em: $\sigma(E)/E = 18\%/\sqrt{E}$ had: $\sigma(E)/E = 35\%/\sqrt{E}$ Fine-grained LAr calorimeter: em: $\sigma(E)/E = \frac{12\%}{E \oplus 1\%}$ had: $\sigma(E)/E = 55\%/\sqrt{E \oplus 1\%}$

Backward lead-scintillator calo: em: $\sigma(E)/E = \frac{7\%}{\sqrt{E \oplus 1\%}}$

Kinematics

Quark Parton Model: "Scattering on asymptotically free quarks"

- Photon momentum q=k'-k
- Squared center-of-mass energy $s = (k+P)^2 \approx 2k \cdot P$
- Virtuality $Q^2 = -q^2$
- Quark momentum $x \cdot P$: Bjorken- $x = Q^2/(2q \cdot P)$
- Inelasticity $y=q \cdot P/k \cdot P$ (E_{γ}/E_{e} in proton rest system)

• "Master formula": $Q^2 = x \cdot y \cdot s$ => only 2 independent variables, normally *x* und Q^2

Kinematics can be reconstructed from electron or hadronic final state alone => over constrained!

Structure Functions, Parton Densities

• Hadron tensor is expressed in terms of structure functions F_1 , F_2 , F_3 Resulting ep cross section (F_3 is parity violating, vanishes for pure γ exchange):

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}x\,\mathrm{d}Q^2} = \frac{4\pi\alpha^2}{xQ^4} \left((1-y)\tilde{F}_2 + y^2x\tilde{F}_1 \mp \left(y - \frac{y^2}{2}\right)x\tilde{F}_3 \right)$$

• Contributions from γ , Z^0 exchange and γZ interference:

$$\tilde{F}_{2} = F_{2} + k(-v_{e} \mp Pa_{e})xF_{2}^{\gamma Z} + k^{2}(v_{e}^{2} + a_{e}^{2} \pm Pv_{e}a_{e})xF_{2}^{Z} x\tilde{F}_{3} = k(-a_{e} \mp Pv_{e})xF_{3}^{\gamma Z} + k^{2}(2v_{e}a_{e} \pm P(v_{e}^{2} + a_{e}^{2}))xF_{3}^{Z}$$

• Structure functions are calculated from parton densities:

$$F_2 = x \sum_q e_q^2 \left(q + \bar{q} \right)$$

• Parton densities depend on x and Q^2 , they can be evolved in Q^2 using the DGLAP equations

Kinematic Plane

HERA covers more than 5 orders of magnitude in x und Q^2

- Opens region at very low *x* => high parton densities
- Tests evolution of parton densities over a wide Q^2 region

 $Q^2 = x \cdot y \cdot s$ => Usable *y* range determines kinematically accessible range

HERA and **LHC**

Structure Function Measurements

- Introduction
- Structure Function Measurements
 - $-F_2$ in the bulk data
 - $-F_2$ in corners of phase space
 - $-F_1 / F_L$ measurements
 - $-F_3$ measurements
 - -Flavour-exclusive measurements: $F_2^{c\overline{c}}$, $F_2^{b\overline{b}}$
 - -Charged current measurements
- Structure Function Fits
- Summary and Outlook

The Bulk Data: *F*₂

• Large part of phase: F_2 dominates cross section

$$\frac{\mathrm{d}^2 \sigma_{\mathrm{NC}}^{\pm}}{\mathrm{d}x \,\mathrm{d}Q^2} = \frac{2\pi\alpha^2}{xQ^4} \left(Y_+ F_2 \mp Y_- F_3 - y^2 F_{\mathrm{L}} \right) \qquad Y_{\pm} = 1 \pm (1-y)^2$$

- Bulk data:
 - -0.005 < y < 0.6: Electron well measured
 - $-Q2 > 2 \text{ GeV}^2$: Electron in main detector $(Q2 < 100 \text{ GeV}^2$: rear calorimeter)
- $F_{\rm L}, xF_3 << F_2$

$$F_2 = x \sum_q e_q^2 (q + \bar{q})$$

Typical DIS Events

$$Q^2 = 25030 \text{ GeV}^2, y = 0.56, M = 211 \text{ GeV}$$

A low-Q² event in ZEUS: electron in rear calorimeter

A high-Q² event in H1: electron in central calorimeter

Measurement of *F*₂

Measurement of *F*₂

Overview over F_2

- Kinematic region:
 - -4 decades in x: 0.000065<*x*<0.65
 - $-Q^2$ up to 30000GeV²
- HERA-I data completely analysed
- HERA-II: 3 times (e^+) to 10 times (e^-) more data => better accuracy at
 - small x, large Q^2

Benno List

F₂ in Corners of Phase Space

- Very high x > 0.2: Hadronic final state very close to beam pipe
- Very low $Q^2 < 2 \text{GeV}^2$: Electron escapes main detector
 - Events with QED radiation
 - Special beam pipe calorimeter (ZEUS)
 - Shifted vertex runs: vertex shifted by 70cm
- Very high y>0.6 at moderate Q²: Small electron energy => large background

ZEUS: High x Analysis

- High x: Hadronic final state very close to forward beam pipe New ZEUS analysis [ZEUS, hep-ex/0608014]
- Data agree with SM expectation, but are on the high side

Accessing Low Q²

- Radiative events: Momentum of exchanged photon reduced by QED radiation
- ZEUS: BeamPipe Calorimeter BPC plus BeamPipe Tracker BPT
- H1: Backward Silicon Tracker BST + data from shifted vertex runs

Result of Low-Q² Measurements

- Overlap with fixed target data (E665, NMC, SLAC): consistent results
- Data agree with parametrization ALLM97 [Abramowitz & Levi, hep-ph/9712415]

HERA Data: ZEUS, PL B487(2000)53; H1, PL B598(2004)159; H1, EPJ C21(2001) 33; H1prelim-04-042.

Measuring *F*₁/*F*_L

- Callan-Gross-Relation: $F_L = F_2 2xF_1 = 0$ valid in naive Quark-Parton-Model (QPM)
- QCD predicts nonzero $F_{\rm L}$
- True F_L measurement needs cross section measurements at same x, Q², but different y => Vary beam energies!
 => Planned for last 3 months of HERA-II data taking (next summer)
- Other method: Measure , $\frac{d^2\sigma}{dx dQ^2} = \frac{2\pi\alpha^2}{xQ^4}Y_+\left(\underbrace{F_2 \frac{y^2}{Y_+}F_L}\right)$ evolve F_2 from at fixed x from low $Q^2 = \text{low } y$ to high y => difference between F_2 and σ_r gives F_L
- High *y* => low electron energy => high background needs excellent understanding of photoproduction background

F_L Determination

- $F_{\rm L}$ results in agreement with QCD expectations
- True measurement next summer

F₃

• Remember:

$$\frac{\mathrm{d}^2 \sigma_{\mathrm{NC}}^{\pm}}{\mathrm{d}x \,\mathrm{d}Q^2} = \frac{2\pi\alpha^2}{xQ^4} \left(Y_+ \,\tilde{F}_2 \mp Y_- \,x \tilde{F}_3 - y^2 \tilde{F}_{\mathrm{L}} \right) \qquad Y_\pm = 1 \pm (1-y)^2$$

- *F*₃ enters with different sign for e⁻p and e⁺p scattering: measured from difference of e⁻p and e⁺p cross sections => needs high accuracy data with both lepton charges!
- F_3 dominated by γZ interference,

measures difference of quark and antiquark densities: valence quarks

$$x\tilde{F}_{3} = k(-a_{e})xF_{3}^{\gamma Z} + k^{2}(2v_{e}a_{e})xF_{3}^{Z}$$
$$xF_{3}^{\gamma Z} = 2x\sum_{q}(e_{q}a_{q})(q-\bar{q}) = 2x(2u_{v}+d_{v})$$

• Dominated by u quark contribution: larger charge and 2 u quarks

Measurements of *F*₃

- ZEUS and H1 have measured F_3 , using latest HERA-II e⁻p data
- First combined H1/ZEUS measurement => overall 478.8pb⁻¹
- Measurement of u valence quark density

Benno List

Polarized NC Measurements

• F_2 and F_3 contain polarization dependent terms from γZ interference and Z exchange:

$$\tilde{F}_{2} = F_{2} + k(-v_{e} \mp Pa_{e})xF_{2}^{\gamma Z} + k^{2}(v_{e}^{2} + a_{e}^{2} \pm Pv_{e}a_{e})xF_{2}^{Z}$$

$$x\tilde{F}_{3} = k(-a_{e} \mp Pv_{e})xF_{3}^{\gamma Z} + k^{2}(2v_{e}a_{e} \pm P(v_{e}^{2} + a_{e}^{2}))xF_{3}^{Z}$$

• Measure asymmetry between cross sections for left- and righthanded electron positron-proton cross sections:

Flavour-Exclusive Measurements

- Define structure functions $F_2^{c\overline{c}}$, $F_2^{b\overline{b}}$ for charm and beauty production
- Charm tagging: D* or lifetime tag; beauty: lifetime tag

Charm Contribution

- Charm well described by NLO QCD; at low Q^2 : slight deviations
- Precise enough to constrain the gluon, but: theory uncertainties!

Sino-German Workshop "Frontiers in QCD" 2006 - Structure Function Measurements at HERA

Beauty Contribution

- H1 uses lifetime tagging to extract charm and beauty contribution to F₂ in one measurement
- Reasonably well described by NLO QCD
- NNLO calculations available! [Thorne hep-ph/0506251].
- More data to come from HERA-II

Charge Current Interactions

Neutrino escapes the detector
 => reconstruct event from hadronic final state
 => need excellent energy and spatial resolution

Double Differential Cross Sections

Sino-German Workshop "Frontiers in QCD" 2006 - Structure Function Measurements at HERA

Probing the Helicity Structure

• Integrated CC cross section proportional to $(1 \pm P_e)$: A textbook plot!

Structure Function Fits

- Introduction
- Structure Function Measurements
- Structure Function Fits
 - -Extraction of Parton Densities
 - -Extraction of α_s
- Summary and Outlook

Fitting Parton Densities

Extraction of Parton Densities

- Analyses by H1 [EPJ C30(2003)1] and ZEUS [PR D67(2003)012007]:
 - -Use F_2 data from own experiment
 - Plus CC data (constraints on u, d at high x)
 - Plus fixed target data (ZEUS only)
- Similar results, but significant differences: are the parametrizations general enough?

Parton Densities

- Qualitative Agreement H1-ZEUS
- Differences due to different methods and data sets

Note: sea quark density *S* and gluon density *g* scaled down by faktor 20!

Gluon Densities before/after HERA

(theoretical estimate only!)

 $2001:\pm5\%$ uncertainty, based on measurement!

-BCDMS) total uncertainty

+BCDMS) exp. uncertainty

 $Q^2 = 200 \text{ GeV}^2$

10^2

exp. + α_{s} uncert.

Sino-German Workshop "Frontiers in QCD" 2006 - Structure Function Measurements at HERA

Collaboration

10⁻¹

X

A Success for DGLAP

- Together with fixed target data: Test of scaling violations over 4 orders of magnitude in *Q*² at fixed *x*
- NLO-QCD fits based on DGLAPevolution describe data very well
- No obvious deviations from "Standard Model of Parton Densities"

Adding Jet Data

- New ZEUS analysis [EPJ C42(2005)1]:
- Add DIS and γp dijet data (direct photoproduction): adds to knowledge of gluon density at large x

ZEUS-Jets vs. H1-2000

- After inclusion of Jets data by ZEUS, H1 and ZEUS pdf fits agree well
- Still differences for gluon

Using Polarized Data

- Preliminary ZEUS result (ZEUS-prel-006-03):
- Polarized HERA-II data improves valence quark uncertainty at large *x*
- Central values unchanged compared to ZEUS-Jets fit

Extraction of α_s

Scaling violations:

- Proportional to α_s and gluon density
- At large *x*: Gluon radiation off quarks dominates, $\partial F_2/\partial \ln Q^2$ allows measurement of α_s
- *Gluon Splitting* damps scaling violations from gluon radiation
 - => Reliable determination of α_s from DIS needs

very good understanding of gluon densities over a wide *x* range

α_s from Structure Function Fits

- H1: Combine with fixed target data (BCDMS) to pin down scaling violations at large/medium x (disentangle gluon density and α_s) => $\alpha_s(M_Z)=0.1150\pm0.0017 \stackrel{+0.0009}{_{-0.0005}}$ exp. model
- ZEUS: Jet data make external input unnecessary => $\alpha_s(M_Z)$ =0.1183±0.0007±0.0022±0.0016±0.0008

uncorr. corr. norm. model

• *Theory uncertainty:* ±0.005 (dominates)

 $\tilde{H_1}^{H_1}$ $\tilde{H_1}^{H_1}$ $\tilde{H_2}^{H_1}$ $\tilde{H_1}^{H_1}$ $\tilde{H_2}^{H_1}$ $\tilde{H_$

Sino-German Workshop "Frontiers in QCD" 2006 - Structure Function Measurements at HERA

Summary and Outlook

- Introduction
- Structure Function Measurements
- Structure Function Fits
- Summary and Outlook

Summary

- HERA-II is running well, producing lots of new data:
 - 10-fold increase of e-p data set
 - polarized ep scattering data
- High-precision F2 data over a large range of x and Q^2
- Polarized Charged Current Data test helicity structure of W exchange
- F3 measurements become significant: Combination of ZEUS and H1 data has started
- Flavour-exclusive measurements for charm and beauty available
- Polarization effects in Neutral Current data become visible
- α_s measurements compatible and competitive with world average, profit from understanding of gluon at high *x*

Outlook

- More data coming in: 3-fold increase of e⁺p data set possible
- Data analysis of final e-p data set to come
- Low energy run in summer 2007: a real $F_{\rm L}$ measurement
- Parton density determination can still be improved:
 - NNLO evolution
 - Improved data and theory: include charm and beauty data in fits

HERA data analysis will deliver interesting results for many years!