Particle production and spectroscopy at HERA

Anna Falkiewicz, IFJ PAN

for the ZEUS and H1 collaborations

- 1. Motivation for particle production studies
- 2. Charged particle production
- 3. Strangeness production (K⁰_s, Λ^0)
- 4. Pentaquarks searches (θ^+, θ_c)
- 5. Conclusions

The HERA Collider

e 920(820) GeV 27.5 GeV

Kinematical variables

 \sqrt{s} =320(300) GeV ep CM energy

 $Q^2=-q^2$ photon virtuality, squared fourmomentum transfer

 $x=Q^2/(2qP)$ Bjorken scaling variable

y=Q²/(xs) inelasticity

 $Q^2 > 1 \text{ GeV}^2$: DIS

 $Q^{2} \sim 1 \text{ GeV}^2$: photoproduction

Motivation – what can we learn from particle production at

HERA?

Charged particle at Q²>100 GeV²

- Quark fragmentation universality (comparison with e⁺e⁻)
- Test of hadronisation (String, Cluster)
- Test of fragmentation (CDM, PS)

<u>Charged particle at Q²>100 GeV²: e⁺e⁻ vs ep</u>

ep current region of Breit frame (struck quark) compare to hemisphere $e^+e^- \rightarrow qq$

Scale Q in DIS equivalent to E^* in e^+e^-

Charged particle at Q²>100 GeV²: fragmentation study

Charged particle at Q²>100 GeV²: hadronisation study

String fragmentation better than cluster fragmentation

Implemented in RAPGAP

String fragmentation

Cluster fragmentation HERWIG

Neutral strange particles

- Strangeness suppression factor (λ_s) parameter of Lund string model (sensitive to hadronisation)
- 1. Inclusive cross sections
- 2. Ratio of strange to light hadrons

Differential K⁰_s cross section in LAB frame

ZEUS

ZEUS

Differential Λ^0 cross section in LAB frame

ZEUS

ZEUS

 $\lambda_s = 0.3$ describes data well

 λ_s universal? Different strangeness suppression for inclusive

cross sections and ratio of strange to light hadrons! **ZEUS**

N_{ch} – number of charged pions, charged kaons, protons and antiprotons

ARIADNE with $\lambda_s = 0.22$ describes data well

Pentaquarks

• $\theta^+ \rightarrow K_s^0 p$

• $\theta_c \rightarrow D^* p$

<u>Strange pentaquark $\theta^+ \rightarrow K_s^0 p$: ZEUS results</u>

 $\theta^+ \rightarrow K_s^0 p$

 θ^+ production only in forward region of central detector (related to proton remnant?)

<u>Strange pentaquark $\theta^+ \rightarrow K_s^0 p$: H1 results</u>

<u>Strange pentaquark $\theta^+ \rightarrow K_{s}^0 p$: H1 results</u>

Upper limit not in contradiction with ZEUS cross section

H1 1996-2000 data 75 pb ⁻¹	$M_{\theta c}$ =3099±3(stat)± 5(sys) MeV
DIS: 1 <o<sup>2<100 GeV²: 0.05<v<0.7< td=""><td>Width σ=12±3 MeV</td></v<0.7<></o<sup>	Width σ =12±3 MeV
	signal and bg within ± 25 MeV:
$\theta_{c} \rightarrow D^{*}p, D^{*} \rightarrow K^{-}\pi^{+}\pi_{s}^{+}, p \text{ via } dE/dx$	$N_{s=}50.6\pm11.2; N_{b}=45.0\pm2.8(stat.)$
$p_t(D^*p) > 1.5 \text{GeV}, -1.5 < \eta(D^*p) < 1$	Significance ~5.4σ

Acceptance corrected ratio of cross sections:

 $R_{cor}(D^*p/D^*) = 1.59 \pm 0.33^{+0.33}_{-0.45}\%$

<u>Charm pentaquark $\theta_c \rightarrow D^*p$: ZEUS results</u>

No signal!

H1 ratio of cross sections ($R_{cor}(D^*p/D^*)=1.59\pm0.33^{+0.33}_{-0.45}\%$) excluded but differences in selections:

- ZEUS: $|\eta_D| < 1.6$, $p_{t,D} > 1.35$ GeV, y < 0.95
- H1: $-1.5 < |\eta_D| < 1$, $p_{t,D} > 1.5 \text{ GeV}$, 0.05 < y < 0.7

Conclusions

Charged particle production

- string hadronisation (JETSET) better than cluster fragmentation (HERWIG)
- quark fragmentation universality demonstrated (e⁺e⁻ vs ep)
- PS and CDM give similar description of the data, PS+SCI gives better description at high x_p

Strangeness production

- inclusive Λ and K_{s}^{0} cross sections best described by ARIADNE with $\lambda_{s} = 0.3$
- ratio of strange to charged light mesons requires $\lambda_s = 0.22$ rather than 0.3

Pentaquark production

• narrow state in K_{s}^{0} p observed by ZEUS at ~1520 MeV $\sigma(ep \rightarrow e\theta^{+}X \rightarrow eK_{s}^{0}pX)=125\pm27+36-28 \text{ pb}$

H1 does not observe signal, upper limits do not exclude ZEUS cross section

• narrow state in D*p observed by H1 at ~3099 MeV

 $R_{cor}(D^*p/D^*)=1.59\pm0.33^{+0.33}_{-0.45}\%$

ZEUS does not confirm signal $R_{cor} < 0.59\%$