Heavy Flavor Production at HERA and the Tevatron

Bruce Straub, University of Oxford

Physics in Collision, Buzios, Brazil , 5-9 July 2006

Heavy Flavor Production at HERA and the Tevatron

• • = • • = •

 Outline
 c and b Production in pp
 c and b Production in DIS
 Photoproduction of c and b b Production at HERA
 Conclusions

Outline

- (1) c and b Production in $p\bar{p}$
 - CDF: Prompt Charm Meson Production Cross Sections
 - CDF: J/ψ and *b*-Hadron Production Cross Sections
 - CDF: Inclusive *b*-Jet Production
 - CDF: *bb*-Dijet Production
- 2 c and b Production in Deep Inelastic Scattering
 - HERA Kinematics
 - H1: Measurement of $F_2^{c\bar{c}}$ and $F_2^{b\bar{b}}$
- Photoproduction of c and b
 - Photoproduction Processes
 - H1: c and b dijet cross sections in γp
 - ZEUS: $\gamma p \rightarrow D^* + \text{jet}(s)$
- 4 b Production at HERA
 - ZEUS: Beauty production using a $D^*\mu$ tag
 - ZEUS: Beauty production from dimuon events

5 Conclusions

CDF: Prompt Charm Meson Production Cross Sections

- 2 tracks with impact param. w.r.t beam > 120 μ m
- decay length $> 200 \,\mu$ m

CDF: Prompt Charm Meson Production Cross Sections

- Prompt charm meson cross sections for |y| < 1
- Inner error bars are statistical, outer are systematic (dominates).
 - 3%-4% uncertainty on prompt fraction
 - 8%-14% uncertainty on trigger/reconstruction efficiency
- Theory curves by Cacciari and Nason, J.High Energy Phys. 0309 (2003) p.6.

CDF: J/ψ and *b*-Hadron Production Cross Sections

Acosta, et.al., Phys. Rev. D 71, 032001 (2005).

CDF: J/ψ and b-Hadron Production Cross Sections

A B > A B >

CDF: J/ψ and *b*-Hadron Production Cross Sections

CDF: J/ψ and *b*-Hadron Production Cross Sections

- single *b*-hadron cross section for |y| < 0.6
 - $\sigma^{\text{FONLL}} = 16.8^{+7}_{-5} \, \mu \text{b}$
 - $\sigma^{\text{CDF}} = 17.6 \pm 0.4^{+2.5}_{-2.3} \, \mu \text{b}$
- compare $\sigma(p\bar{p} \to H_b X) \cdot Br(H_b \to J/\Psi) \cdot Br(J/\Psi \to \mu^+\mu^-)$
 - for $P_t(J/\Psi) > 5 \,\mathrm{GeV}$ and $|\eta(J/\Psi)| < 0.6$
 - $\sigma^{\rm runI} = 3.23 \pm 0.05 \pm 0.30 \, {\rm nb}$
 - $\sigma^{\rm runII} = 2.75 \pm 0.04 \pm 0.20 \, {\rm nb}$
 - run II σ should be 10% higher

э

CDF: Inclusive *b*-Jet Production

b-jet cross section less sensitive to hadronization than *b*-hadron cross-section.

Efficiency to tag *b*-jets using SecVtx algorithm. Simulated efficiency is corrected with efficiency measured in electron sample. Syst. uncertainty~ 7% Use 300 pb⁻¹.

CDF: Inclusive b-Jet Production

Fraction of *b*-jets in each P_t bin determined by fit to spectrum of secondary vertex mass. Templates from Pythia. Syst. uncertainty oin *b*-fraction

CDF: Inclusive b-Jet Production

Fraction of *b*-jets in each P_t bin.

CDF: Inclusive *b*-Jet Production

b-jet cross section compared to NLO (Mangano and Frixione, Nucl. Phys. B483, 321 (1997)).

< E

 Outline
 c and b Production in pp
 c and b Production in DIS
 Photoproduction of c and b b Production at HERA
 Conclusions

CDF: Inclusive b-Jet Production

systematic uncertainties	low P_t	high P_t	
vary E -Scale by $\pm 3\%$	+10%/-8%	+39%/-22%	
Unfolding	$\pm 5\%$	$\pm 15\%$	
vary E resolution by $\pm 10\%$	$\pm 6\%$		
Luminosity	$\pm 5.8\%$		

CDF RunII Preliminary

Heavy Flavor Production at HERA and the Tevatron

13/43

CDF: *bb*-Dijet Production

Select events with 2 secondary-vertex tagged jets with $|\eta|<1.2,\,E_T^1>30\,{\rm GeV}$ and $E_T^2>20\,{\rm GeV}.$

Plot show tagging efficiency measured using electron jet with opp-side secondary vertex tagged jet

→ 3 → 4 3

< 1 →

CDF: *bb*-Dijet Production

Fit of data for linear combination of templates. $F_b=0.83\pm0.04.$ $\sigma_{b\bar{b}}(|\eta|<1.2,E_t^1>30,E_t^2>20)=34.5\pm1.8\pm10.5\,\mathrm{nb}$

Heavy Flavor Production at HERA and the Tevatron

э

 Outline
 c and b Production in pp
 c and b Production in DIS
 Photoproduction of c and b b Production at HERA
 Conclusions

CDF: *bb*-Dijet Production

 Outline
 c and b Production in pp
 c and b Production in DIS
 Photoproduction of c and b b Production at HERA
 Conclusions

CDF: *bb*-Dijet Production

Agreement with ${\tt MC@NLO}$ is improved by using ${\tt JIMMY}$ to model the underlying event.

HERA Kinematics

- $E_e = 27.6 \, \text{GeV}$
- $E_p = 920 \, \text{GeV}$
- $\sqrt{s} = 319 \,\text{GeV}$
- *z* = proton direction
- e p p p c c c c c

The dominant LO process for $c\bar{c}$ and $b\bar{b}$ production is photon-gluon fusion. $d\sigma/dx \sim g(x)$

$$Q^2 = -(\gamma 4 \text{-mom})^2$$

x = fraction of p momentum carried by g $y = Q^2/(sx)$

= fraction of initial-state $E - P_z$

transferred to hadronic final state.

$$\frac{d^2 \sigma^{c\bar{c}}(x,Q^2)}{dx dQ^2} = \frac{2\pi \alpha^2}{xQ^4} \left\{ \left[1 + (1-y)^2 \right] F_2^{c\bar{c}}(x,Q^2) - y^2 F_L^{c\bar{c}}(x,Q^2) \right\}$$

ratio F_2/F_L is calculated by QCD.

(4) (E) (A) (E) (A)

H1: Measurement of $F_2^{c\bar{c}}$ and $F_2^{b\bar{b}}$

H1: Measurement of $F_2^{c\bar{c}}$ and $F_2^{b\bar{b}}$

H1: Measurement of $F_2^{c\bar{c}}$ and $F_2^{b\bar{b}}$

э

 Outline
 c and b Production in pp c and b Production in DIS
 Photoproduction of c and b b Production at HERA Conclusions

 Outline
 c and b Production of c and b Production of c and b production of c and b production at HERA Conclusions

Photoproduction Processes

Resolved Photoproduction $x_{\gamma} =$ fraction of $(E - P_z)_{\gamma}$ carried by interacting parton. Remaining partons produce the 'photon remnant'.

H1: c and b dijet cross sections in γp

- 56.8 pb⁻¹
- Use same method as for DIS
 - Fit reflection-subtracted S1 and S_2 distributions to get c, b, and light quark fractions.
- 0.15 < y < 0.8
- Require 2 jets
 - inclusive k_t algorithm in the p_t recombination scheme
 - iets lie within -0.l9 < n < 1.3
 - $P_{4}^{(1)} > 11 \,\text{GeV}$
 - P_t⁽²⁾ > 8 GeV

- Dominant Systematics
 - Varv Impact Parameter 7% (c). Resolution: 10% (b)
 - Varv resolved fract.. P_t spectrum in Pythia: 7% (c). 14% (b)
 - uds asymmetry: 1% (c), 6% (b)
 - Jet E-Scale: 6% (c), 5% (b)
 - Trigger Efficiency: 5%
- Use Pythia or Cascade to calculate acceptance.
- NLO QCD predictions with FMNR
 - CTEQ5F3 proton pdf
 - GRV-G HO photon pdf

hep-ex/0605016 submitted to Euro.J.Phys.C

H1: c and b dijet cross sections in γp

Data above NLO, especially for b and for low x_{γ}

H1: c and b dijet cross sections in γp

э

H1: c and b dijet cross sections in γp

	Charm [pb]	Beauty [pb]
Data	$702 \pm 67(stat.) \pm 95(syst.)$	$150 \pm 17(stat.) \pm 33(syst.)$
FMNR	500^{+173}_{-99}	83^{+19}_{-14}
PYTHIA	484	76
CASCADE	438	80

The measured charm and beauty photoproduction dijet cross sections in the kinematic range $Q^2 < 1 \text{ GeV}^2$, 0.15 < y < 0.8, $p_t^{\text{Jet}_{1(2)}} > 11(8)$ GeV and $-0.9 < \eta^{jet_{1(2)}} < 1.3$ in comparison to predictions in NLO QCD (FMNR) and from the Monte Carlo programs PYTHIA and CASCADE.

ZEUS: $\gamma p \rightarrow D^* + \text{jet(s)}$

• Tagged if $\Delta R(D^*, \text{jet}) < 0.6$

1 $\Delta R(D^*,iet)$

ZEUS: $\gamma p \rightarrow D^* + jet(s)$

Massless Calculation: Binnewies, Kniehl, Kramer, Z.Phys. C 76, 677 (1997), Kniehl, Kramer, Spira, Z.Phys. C 76, 689 (1997)

$ZEUS: \gamma p \rightarrow D^* + jet(s)$

ZEUS: $\gamma p \rightarrow D^* + jet(s)$

- $x_{\gamma}^{\text{obs}}(D^*, \text{jet}) = \text{fraction of incoming } \gamma E P_z \text{ transferred to the hadronic final state}$ For direct (pointlike) photoproduction $x_{\gamma}^{\text{obs}}(D^*, \text{jet}) = 1$ Excess of data over NLO is greater for resolved $\gamma p (x_{\gamma}^{\text{obs}}(D^*, \text{jet}) < 0.75)$

э

ZEUS: $\gamma p \rightarrow D^* + \text{jet(s)}$

NLO calculation does not describe non-back-to-back configurations, especially for $x_{\gamma}^{\rm obs} < 0.75$ (resolved photon). HERWIG does a reasonable job.

э

ZEUS: $\gamma p \rightarrow D^* + \text{jet}(s)$

Again NLO calculation does not describe jet pairs with a net P_t , especially for $x_{\gamma}^{\rm obs} < 0.75$ (resolved photon). HERWIG does a reasonable job. For precise description, we need a program to match parton showers to NLO.

ZEUS: Beauty production using a $D^*\mu$ tag

- 114 pb⁻¹
- Low Branching Ratio, High Purity
- $BR(b \to D^{*\pm})$. $BR(D^*+ \rightarrow D^0\pi^+)$ $BR(D^0 \to K^- \pi^+) = 0.45 \pm 0.05\%$

 - $BR(b \rightarrow \mu^{-}) = 13.2 \pm 0.6\%$
 - Sensitive to low-P_t b production
 - D_{*}, μ from same b have opposite charge
 - D^*, μ from different b's may have like or unlike charge
 - μ, D^* from $c\bar{c}$ have opposite charge
 - Fake D* background estimated from data

ZEUS: Beauty production using a $D^*\mu$ tag

High *b*-fraction at low ΔR . For $\Delta R < 2$, require $3 < M(\mu, D^*) < 5 \,\text{GeV}$

ZEUS: Beauty production using a $D^*\mu$ tag

 ΔR spectrum after subtracting fake D^* 's and requiring $3 < M(\mu, D^*) < 5 \,\text{GeV}$ for $\Delta R < 2$. Fit to this plot yields:

 $f_b = 0.363 \pm 0.084$ (stat).

ZEUS: Beauty production using a $D^*\mu$ tag

visible $\sigma(ep \rightarrow eb\bar{b}X \rightarrow eD^*\mu X')$:				
$P_t(D^*) > 1.9{\rm GeV}, \eta(D^*) < 1.5, P_t(\mu) > 1.4{\rm GeV}, -1.75 < \eta(\mu) < 1.3$				
ZEUS: $\sigma_{\rm vis} = 214 \pm 52 \text{ (stat)} + \frac{96}{-84} \text{ (syst) pb}$				
NLO+Pythia: $\sigma_{\rm vis} = 72 {}^{+20}_{-13}$ (NLO) ${}^{+14}_{-10}$ (frag+br) pb NLO = 0.0 - 1.7				
photoproduction only $Q^2 < 1 \text{ GeV}^2$, $0.05 < y < 0.85$				
ZEUS: $\sigma_{\rm vis} = 159 \pm 41 \text{ (stat)} + \frac{68}{-62} \text{ (syst) pb}$				
NLO+Pythia: $\sigma_{\text{vis}} = 57 \stackrel{+16}{_{-10}}$ (NLO) $\stackrel{+11}{_{-9}}$ (frag+br) pb				
H1 Cuts: $P_t(D^*) > 1.5 \text{GeV}, \eta(D^*) < 1.5, P_t(\mu) > 2.0 \text{GeV}, \eta(\mu) < 1.735$				
ZEUS: $\sigma_{\rm vis} =$ 186 ± 48 (stat) $^{+80}_{-73}$ (syst) pb				
H1: $\sigma_{\rm vis} =$ 206 ± 53 (stat) ± 35 (syst) pb				

$\sigma(ep \rightarrow bX)$					
Use Pythia to extrapolate to $y_{rapidity}(b) < 1$, $Q^2 < 1 \text{ GeV}^2$, $0.05 < y < 0.85$					
ZEUS:	$\sigma_h =$	15.1	± 3.9 (stat) $^{+3.8}_{-4.7}$ (syst) nb	Doto o o±1.3	
NLO(FMNR):	$\sigma_b =$	5.0	+1.7 nb	$\frac{Data}{NLO} = 3.0^{+1.0}_{-1.6}$	

NLO calculations from Cacciari, Frixione, and Nason, JHEP 0103, (2001) p.6

ZEUS: Beauty production from dimuon events

• 121 pb⁻¹

- require 2 μ 's with $-2.2 < \eta < 2.5$
- One μ with $P_t > 1.5 \,\mathrm{GeV}$
- $2^{nd} \mu$ with $P_t > 0.75 \,\text{GeV}$
- $c\bar{c}$ background estimated from $D^*\mu$ analysis
- Apply non-isolation requirement to supress J/Ψ and $\gamma\gamma\to\mu^+\mu^-$ backgrounds
- Normalize J/Ψ and $\gamma\gamma \rightarrow \mu^+\mu^-$ backgrounds using isolated $\mu^+\mu^-$ pairs
- Fake $\mu\mu$ background \sim same for same sign and opposite sign

$$N_{b\bar{b}} = \left(N_{\rm data}^{+-} - N_{\rm data}^{++,--} - N_{c\bar{c}} - N_{J/\Psi} - N_{\gamma\gamma}\right) \times \left(\frac{N_{b\bar{b}}^{+-} + N_{b\bar{b}}^{++,--}}{N_{b\bar{b}}^{+-} - N_{b\bar{b}}^{++,--}}\right)_{\rm MC}$$

000000000

ZEUS: Beauty production from dimuon events

 $\mu\mu$ mass spectra before non-isolation requirement

000000000

ZEUS: Beauty production from dimuon events

Unlike sign sample after non-isolation requirement

39/43

ZEUS: Beauty production from dimuon events

 $d\sigma/dP_t$ for μ from b decays in $\mu\mu$ events with $P_t^{\mu} > 1.5 \text{ GeV}$ and $-2.2 < \eta^{\mu} < 2.5$

ZEUS: Beauty production from dimuon events

visible $\sigma(ep \rightarrow eb\bar{b}X \rightarrow \mu\mu X')$:

 $\sigma(ep \to bX)$

Use Pythia to extrapolate to $y_{\text{rapidity}}(b) < 1$, $Q^2 < 1 \text{GeV}^2$, $0.05 < y < 0.85$				
ZEUS:	$\sigma_b =$	16.1	± 1.8 (stat) $^{+5.3}_{-4.8}$ (syst) nb	Data _ 2 2+1.0
NLO(FMNR):	$\sigma_b =$	7.0	^{+3.0} _{-1.7} nb	$NLO = 2.3_{-1.2}$

NLO calculations from Cacciari, Frixione, and Nason, JHEP 0103, (2001) p.6

Summary

- CDF c cross sections exceed NLO by $\sim 50-100\%$
- CDF *b*-hadron cross sections from J/Ψ in good agreement with FONLL
- CDF b-jet cross sections agree at low P_t, higher (within errors) at high P_t
- CDF $b\bar{b}$ dijet cross sections above MC@NLO, agreement improved by including underlying event
- H1 $F_2^{c\bar{c}}$ and F_2^{bb} agree with QCD fits. Precision comparable to D^* measurements
- H1 direct *c*, *b* diject cross sections described by NLO, for resolved data exceeds theory
- ZEUS D*+jets in γp agrees with NLO, except for non-back-to-back topologies
- ZEUS measures *b* production 2-3 times above theory, with large uncertainties.

伺 ト く ヨ ト く ヨ ト

Outlook

- All results shown today use only a small part of the on-tape luminosity for the Tevatron and HERA.
- The Tevatron can expect 4-8 fb^{-1} .
- HERA experiments have $\sim 250\,{\rm pb^{-1}}$ of useable luminosity on tape.
- Should be $\sim 450\, \text{pb}^{-1}$ when running ends in June 2007.
 - Hopefully a flood of HERA II results next summer
 - Rapid understanding of ZEUS Micro Vertex Detector
- Many (most) results shown were systematics limited
 - Much hard work ahead.
- Theoretical errors are quite large (often a factor of 2).

Image: A Image: A