Electroweak physics in ep scattering with polarised leptons

Kunihiro Nagano (KEK, Japan)

On behalf of the H1 and ZEUS collaborations

XXVI PHYSICS IN COLLISION 2006 6-9 July 2006, Buzios Rio de Janeiro, Brazil

EW @ DIS ?

• Remember: Weak neutral current was "DIScovered" by the Gargamelle

• ν -DIS has been a good test bench for the weak mixing angle, $\sin \theta_w$: nowadays as well "NuTeV anomaly"

(Q² is momentum transfer squared)

HERA : world's the only ep collider

Q² corresponds to: the scale (wavelength) to probe the proton $\lambda \sim 1/\sqrt{Q^2}$ the scale of the elementary interaction between e and quark

$$Q^2_{MAX} = s$$
 At HERA: Ee=27.5 GeV, Ep=920 GeV $Q^2_{MAX} \sim 10^5 GeV^2$
 $\sqrt{s} = 320 \text{ GeV}$ $\lambda_{MAX} \sim 1/1000 r$

ν -DIS: Weak @ Q² ≈ 0
HERA: Electro-Weak @ Q² ≈ EW scale

 $\lambda_{MAX} \sim 1/1000 r_{proton}$ (corresponds to ~50 TeV incident beam on fixed target)

HERA

- t-channel exchange of gauge bosons
 - -- γ/Z interference in propagator
 - -- propagator masses

• Parton Distribution Functions (PDFs) are needed

- A "SM test":
 - -- Test & measure proton structure (i.e. PDFs) at lower Q²
 - -- Examine EW between e and q at EW scale, based on own knowledge of PDFs
 - -- Examination can be done for both NC and CC

 $EW \otimes OCL$

 $\sigma(ep) \propto \sum \sigma(eq) \otimes (pdf)$

HERA Data

 \blacktriangleright HERA-I : \rightarrow Year 2000 • Unpolarized e+ and e- beams • Structure function measurement at: $1.5 \le Q^2 \le 30000 \text{ GeV}^2$, i.e. -- Starting from low Q² -- Covering wide Q² range Initial EW result: "EW unification" \blacktriangleright HERA-II : Year 2002 \rightarrow • High luminosity to allow more statistical sensitivity for large Q^2

• Longitudinally polarized e+ and e- beams to allow direct sensitivity to EW

Contents of this talk are:

- I. Proton structure
- II. DIS @ EW scale (unpolarized)
- **III. DIS @ EW scale with polarization**
- **IV. QCD+EW combined fit**

giving both legacy and hot results of HERA !

	HERA-I	HERA-II
e-	~20 pb ⁻¹	~120 pb ⁻¹
e+	~100 pb ⁻¹	~40 pb ⁻¹

(Luminosity for data ₅ analyzed)

I. Proton structure

• SF measurement and PDF determination

Structure Functions (SFs)

DIS is a straightforward tool to probe p structure

 \square Virtuality: $Q^2 = -(k-k')^2$ hadrons (jet) 9 → Spatial resolution of probe $\lambda \sim 1/\sqrt{Q^2}$ \square Bjorken scaling variable: $x = Q^2 / 2pq$ Virtual γ, W, Z e^{-}, e^{+} → Momentum fraction of struck parton \square Inelasticity: y = pk / pq• Energy transfer to proton (at p rest frame) $Q^2 = \chi \gamma S$

• Experiment measures Cross-sections:

Structure Functions (SFs)

> Mom.frac. of q

> Spatial resolution

SFs parameterize target structure, i.e how far from point-like

proton

Quark-Parton Model (QPM)

• Kinematic is in y: y corresponds to scattering angle between e and quark

► At low Q² where electro-magnetic dominates:

- -- F_2 =Vector component only
- -- All quarks contribute to F_2 according to their charges: $F_2 = x \Sigma e_q^2 (q + q)$

SFs = (Charges)² × Parton Distribution Functions (PDFs) Xsecs = Coupling × Propagator × Kinematic Factor × SFs

QCD evolution: gluon

Beyond QPM

- -- PDF is not that static
 - \rightarrow "evolution" as Q² grows.
- -- Structure depends on the resolution to see it.
- -- pQCD can describe this evolution: "DGLAP eq."

$$\frac{\partial}{\partial \ln Q^2} \left(\frac{\Sigma}{xg} \right) = \alpha_s \begin{pmatrix} P_{qq} P_{gq} \\ P_{gq} P_{gg} \end{pmatrix} \otimes \begin{pmatrix} \Sigma \\ xg \end{pmatrix}$$

$$\frac{\partial}{\partial \ln Q^2} q_{NS} = \sigma_s P_{qq} \otimes q_{NS}$$

- □ F₂ is sum of q / qbar PDFs
 → Gluon not directly in F₂ (in LO)
 □ Gluon owes "slope" of F₂ in log Q² evolution
- However, pQCD cannot predict x-dependence of PDFs a priori
 PDFs are determined by a global fitting to experimental data (next slide)

Determination of PDFs

D0, CDF (jets) New data η bins, stat + syst. • Initial PDFs (x-dependence) at Q_0^2 are correlations determined by a global fit to various q,g 10^{6} experimental data. $Q^2(GeV^2)$ H1, ZEUS F2 larger coverage 10^{2} Tevatron smaller errors \mathbb{X} PDF are not observable (but F₂ are) jets 10° $F_2 \rightarrow q_{sea}$ \rightarrow Universality should be checked in $\partial F_2 / \partial \ln Q^2 \rightarrow g$ 10^{-3} various processes 10^{2} HERA 10 fixed target (ref. A.Martin @ DIS WS) q flavour 10 HERA plays significant role, in particular: 10^{-3} $10^{\overline{2}}$ 10^{1} 10^{-6} 10^{5} 10^{-4} -- Gluon CCFR/NuTeV At x=10⁻⁴ to 10⁻¹ (i) F_2 , xF_3 -- Sea quarks (LHC main kinematic region) (ii) μ⁺μ → s, s E866 D-Y

х

PDF has been determined precisely. \rightarrow Ready to look EW @ high Q²

II. DIS @ EW scale

• NC and CC cross sections at high Q²

• EW unification

DIS at high Q² [CC]

helicity suppression • Selection: presence of large missing • Kinematics reconstructed using hadrons (only possibility)

... while NC event looks like:

• Selection: presence of high p_T scattered electron, scattered at large angle • Kinematics well reconstructed using either electrons or hadrons (or both)

DIS at high Q² [NC]

Data • Axial component (xF_3) can be seen as a difference

HERA-I

• NC and CC cross sections become similar at EW scale

 \rightarrow "EW unification"

(Differences remained are mainly due to PDFs)

III. DIS @ EW scale with polarization

- Polarization at HERA
- First polarized DIS @ EW scale
 - -- Right-handed CC
 - -- Parity violation in weak NC

HERA-II upgrade

• Luminosity Upgrade : \rightarrow Large luminosity is needed to look high Q^2

- -- Final focusing magnets ("mini-beta") closer to the detector to achieve high luminosity
- Synchrotron backgrounds initially suffered at begin. of HERA-II has solved
 N.b Vacuum improvement in year 1998 enables efficient e- running

(Very short e- lifetime was the reason of small luminosity in HERA-I e- data)

A clear improvement of performance ("slope" improves)
HERA-II luminosity already exceeds HERA-I's

Polarization at HERA-II

● Longitudinal polarization of lepton beam : → Direct EW sensitivity

Pe varies run by run.(30-50 %)

□ Sokolov-Ternov effect

→ Lepton beam has transverse polarization

→ Rise Time @ HERA ~ 40 min.

 □ Spin rotator before/after the H1/ZEUS to flip T → L polarization (and vice-versa back)
 □ Two + one (new) independent Laser Compton Polarimeters

Time [hours]

				0	
		e^+ L: ~ 20 pb ⁻¹ @ Pe=~ -40 %			
e+	$\sim 100 \text{ pb}^{-1}$	$e^+ R: \sim 20 \text{ pb}^{-1} @ Pe=\sim +34 \%$		20	
		$e^{-}L : \sim 80 \text{ pb}^{-1} @ \text{Pe} = \sim -27\%$	Polariz	40	- A CONTRACTOR OF THE OWNER OWNE
e-	~20 pb ⁻¹	$e^{-}R : \sim 40 \text{ pb}^{-1}$ @ Pe=~ +37%	ation	60	 Longitudinal Polarimeter
	HERA-I	HERA-II	[%]	80	* Transverse Polarimeter

The first time of polarized DIS @ EW scale

EW physics with polarized lepton beams

- Polarization = Asymmetry of Helicity states: $P = (N_R - N_L) / (N_R + N_L)$
- Helicity = Chirality (if mass is neglected)
- \rightarrow By means of Pol, chiral structure can be tested.
- RH != LH is: parity violation

Charged-current DIS

• "Pure" Weak

 \rightarrow Chiral structure of weak int. is directly visible as a function of Polarization

- Weak = "100% parity violated" (no RH)
 - → Zero cross section @ Pol=1 (-1 for e+)
 - → σ (Pol) = (1+Pol) σ (Unpol)

Neutral-current DIS

- Weak's parity violating effect through *γ*-Z interference and pure Z
 → visible only at large Q²
- Such γ -Z and Z terms contain EW parameters,
- i.e. quark couplings to Z, $\sin \theta_{\rm W}$, M_Z

• Clear normalization difference observed between +ve/-ve polarizations for all kinematic phase space

• To see polarization dependence clearer: total cross section \rightarrow Next page⁰

<u>CC cross section vs. polarization</u>

HERA-II Data

- Consistent with SM prediction of: σ (RH CC)=0 (Error band from PDF uncertainty)
- Direct sensitivity to $W_R \rightarrow$ Next Slide

Assuming $g_L = g_R$ and ν_R is light:

- -- W_R mass limit was derived as 208 GeV (\leftarrow H1 e+) H1 e-: 186 GeV (Error dominated by polarization uncertainty) H1 e-: 186 GeV ZEUS e-: 180 GeV
- β + decay: > 310 GeV (polarized ¹²N decay)
- cf. W' :> 786 GeV by CDF (W' \rightarrow e ν , $\mu \nu$)

Polarization effects in NC

$$\begin{split} \tilde{F}_2 &= F_2^{\gamma} - (v_e \pm P_e a_e) \chi_Z F_2^{\gamma Z} + ((v_e^2 + a_e^2) \pm P_e 2 v_e a_e)) \chi_Z^2 F_2^Z \\ \tilde{F}_3 &= - (a_e \pm P_e v_e) \chi_Z F_3^{\gamma Z} + ((2v_e a_e \pm P_e (v_e^2 + a_e^2)) \chi_Z^2 F_3^Z) \end{split}$$

Nb.: xF_3 is written as F_3 for simplicity

• Polarization modifies γZ and Z terms as:

- -- Axial to F_2 , vector to F_3
- -- Modification degree by P_e

 $v_e \approx 0$ -- F₂ : 1st order, ~ $\pm P_e a_e \chi_Z F_2^{\gamma Z}$ -- F₃ : 2nd order only, ~ $\pm P_e a_e^2 \chi_Z^2 F_3^Z$ Unpol: $\sigma(e^+) - \sigma(e^-) \rightarrow F_3^{\gamma Z}$ Pol: $\sigma(P_e \rightarrow) - \sigma(P_e \leftarrow) \rightarrow F_2^{\gamma Z}$

• Polarization effects expected only at EW scale, i.e large Q²

NC cross section vs. polarization

HERA-II

Data

• $d\sigma/dx$, $d\sigma/dy$: Polarization effects no strong dependence on x/y

Parity violation of weak NC observed for the first time at EW scale

• Axial SF xF_3 is determined with good precision @ EW scale

IV. QCD+EW combined analysis

• Mw

• Light quark couplings to Z

EW+QCD fit

- A fit to determine both PDF and EW parameters
 -- Advantage: correlation automatically taken into account
- A fit to single experimental data
 - -- H1 fit to H1 data only, ZEUS fit to ZEUS data only
 - -- Advantage: handling on systematic errors is straightforward
 - □ H1 [published] HERA-I : F_2 + Unpol. highQ² NC+CC

PDFs

• Precision of gluon PDF -- Improved by adding Jets ZEUS $Q^2 = 1 \text{ GeV}^2$ $Q^2 = 2.5 \text{ GeV}^2$ without jet data with iet data -0.6 With Jets $Q = 7 \text{ GeV}^2$ $Q^2 = 20 \text{ GeV}^2$ 0.6 ***04 0.2 -0.2 -0.4 -0.6 $Q^2 = 200 \text{ GeV}^2$ $Q^2 = 2000 \text{ GeV}^2$ 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 10-4 10-3 10⁻² 10-1 1 10-4 10^{-3} 10⁻² 10-1 1 х

Precision of u-quark PDF

-- Improved in particular at large x as expected, i.e. $\sigma(NC) \propto 4u + d$

Determination of M_W

ZEUS: $M_W = 82.8 \pm 1.5 (stat + uncor.syst) \pm 1.3 (cor.syst) GeV$

M_w in the framework of SM

• In the SM G_F and M_W are related \rightarrow Fits fully assuming SM

-- On-Mass-Shell (OMS) scheme

X Nb. These are model-dependent extractions

Light quark couplings to Z

Quark couplings compared to other exp

• High precision, competitive to other experiments

Determination of SM EW parameters

• V_u, V_d, A_u, A_d, parameterization as less model dependence as possible

Summary

• HERA has provided most precise inclusive structure function measurements, which brought significant improvements to our knowledge on proton structure

• Based on this precise understanding of the proton structure, HERA is now able to investigate elementary interaction with large luminosity and longitudinal polarization provided since 2003

- --- First polarized DIS @ EW scale
- --- Direct sensitivity to right-handed CC
- --- First observation of parity violation in weak NC @ EW scale
- --- Best determination of light quarks' NC couplings

• HERA will run until 30/June/2007 to collect large sample of e+ with longitudinal polarization.

--- HERA's legacy results on EW will come soon.

Backup Slides

Weak Isospin

• Sensitivity to right-handed weak isospin

$$v_f = T^3_{f,L} - T^3_{f,R} - 2e_f \sin^2 \theta_W$$

 $a_f = T^3_{f,L} + T^3_{f,R}$

► A EW+QCD fit to determine: $T_{u,R}^3$, $T_{d,R}^3$, $\sin^2 \theta_W$ ($T_{u,L}^3$ and $T_{d,L}^3$ fixed @ SM values)

$$T^{3}_{u,R} = -0.07 \pm 0.07 \pm 0.07$$
$$T^{3}_{d,R} = -0.26 \pm 0.19 \pm 0.19$$
$$\sin^{2} \theta_{W} = 0.238 \pm 0.011 \pm 0.023$$

