α_{s} Determinations from Jets and Scaling Violations at HERA

Thomas Kluge, DESY Physics in Collision, 7 July 2006 Buzios, Brazil

on behalf of the H1 and ZEUS Collaborations

The Strong Coupling

Why is it so important to know $lpha_{s}$ precisely?

- X Single free parameter of QCD
- X Affects almost any cross section in high energy collisions
- X Need to know QCD "background" precisely to discover new physics
- X Unification of forces valid?

Features

- X Asymptotic freedom
- X Strong force for partons: (10²x EM, 10¹⁴x weak, 10⁴⁰x gravitation)
- X Less precisely known compared to other forces
- X Cannot get hold of partons (confinement)

hep-ph/0407067 B.Allanach ... P.Zerwas

Determinations

World averages

- **X** 1989: $\alpha_s(m_Z) = 0.11 \pm 0.01$ only at 10%!
- X Now world means from PDG and Bethke, constantly updated
- X Making use of lots of measurements from different processes

HERA at DESY

X Unique facility: separate storage rings for e^{\pm} and p

- X 27.5 GeV electrons on 920 GeV protons
- **X** HERA II (2002..):
- X longitudinally polarised electrons
- **x** inst. luminosity x5
- **X** 2006: best performance ever
- X In the following: analyses with HERA I data

The H1 and ZEUS Experiments

HERA's Contribution to α_{s}

How can HERA contribute?

- X Competitive precision, enters world averages
- **X** Complementary information:
 - ★ Incompatible α_s from ep and e⁺e⁻ ⇒QCD broken!
- **X** Two approaches:
 - \mathbf{X} Scaling violation of F_2
 - very precise measurement and theory
 - 🔅 indirect sensitivity
 - **X** Observation of Jets
 - icon more difficult measurement and theory
 - 🙂 direct sensitivity
 - X Want both!

Factorisation:

$$\sum_{g,q,\bar{q}} \int dx \, f_i(x,\mu_f,\underline{\alpha}_s(\mu_f)) \, \hat{\sigma}_{\text{pQCD}}(x,\mu_f,\mu_r,\underline{\alpha}_s(\mu_r)) \left| (1+\delta_{\text{had}}) \right|$$

٦

Kinematic Coverage

Determination of F₂

е exchanged photon=NC q^2 р $\frac{\mathrm{d}^2 \sigma_{\mathrm{N}C}^{e^+ p}}{\mathrm{d}x \mathrm{d}\Omega^2} = \frac{2\pi\alpha^2}{xQ^4}$ $\left[\left(1 + (1-y)^2 \right) \tilde{F}_2(x,Q^2) - \frac{y^2}{2} \tilde{F}_L(x,Q^2) \mp \left(y - \frac{y^2}{2} \right) x \tilde{F}_3(x,Q^2) \right]$ X In large part of phase space: cross section dominated by electromagnetic structure function F₂ \mathbf{X} F₂ related to parton density functions(pdfs) in QPM: $F_2 = x \sum e_q^2 (q + \bar{q})$ does not depend on $Q^2 \stackrel{q}{\Rightarrow}$ scaling

α_s Extraction with F_2

X Evolution of the pdfs with Q² by DGLAP

equations

X In a fit, the gluon density and $\alpha_s(m_Z)$ can be simultaneously determined

α_s Extraction with F_2

Jet Measurements

- X To obtain direct sensitivity: observable which vanishes for the Born graph
- **X** Final state with multiple partons
- **X** Correspondence jet \leftrightarrow parton at high E_t
- X No unique definition of a jet, here incl. k_t cluster algorithm
- **x** similar to e⁺e⁻ algorithms
- **x** favoured by theory over cone algorithms
 - x infrared and collinear safe at all orders
- x factorisable

✗ For DIS: the E_t of jets in the laboratory frame not QCD driven: recoil of the scattered electron! ⇒ boost to Breit frame of reference

Breit Reference Frame

- X Virtual photon and incoming parton: head-on
- X Calculated using kinematic variables

Breit frame: jet at Born level has no E_t may have high E_t in lab. frame

require minimum E_t in Breit frame -> pQCD reliable

Inclusive Jets at High Q²

- "inclusive": each jet of an event contributes to the cross section
- X High Q²: 150 GeV²...5000 GeV²
- X Exp. error ~5%, mainly due to hadronic energy scale
- **X** Theory prediction:
- ✗ NLOJET++, CTEQ5M1
- X Hadronisation corrections <10% (obtained with MC generators)
- $\pmb{\times} \ \boldsymbol{\mu}_{\!_R} \!=\! E_{_t}$, $\boldsymbol{\mu}_{\!_F} \!=\! Q$, varied by factor 2 to estimate uncertainty
- X Data well reproduced over E_t range

sent to EPS05

Inclusive Jets at High Q²

Method to extract α_{g}

- X Calculate each cross section for some values of $\alpha_s(m_z)$, matched with pdfs
- X Interpolate between points
- X Map measured cross section with error onto $\alpha_{\!_s}(m_{\!_Z})$ axis
- **X** Using Renomalisation Group Equation obtain "running" $\alpha_{s}(\mathbf{E}_{t})$

X Average (with correlated systematics):

 $lpha_s(m_Z) = 0.1\,1\,97\pm\,0.001\,6(\exp.)^{+\,0.004\,6}_{-\,0.004\,8}(\th\,.)$ theory error dominating

 \mathbf{X} Precision comparable with F_2 analysis, compatible within errors

Multi Jets at High Q²

Multi Jets at High Q²

Inclusive Jets in γp

Event Shapes

- X Introduced historically before jets: event shapes
- X Calculate from 4-vectors of HFS a real number, topological feature

X QCD sensitive, more inclusive than jets: no E_t cut \Rightarrow large statistics

- X Ratio of momenta ⇒ had. energy scale cancels (largest exp. uncert. for jets!)
- X But: hadronisation effects very large (upto 100%)
 - ⇒ application for ansatz beyond models:
 Power Corrections

Thrust

$$T_C = \max_{\vec{n}_T} \frac{\sum |\vec{p}_h \cdot \vec{n}_T|}{\sum |\vec{p}_h|}$$

Jet Mass $\rho = \frac{(\sum E_h)^2 - (\sum \vec{p_h})^2}{(2\sum |\vec{p_h}|)^2}$

 $C = \frac{3}{2} \frac{\sum_{h,i} |\vec{p_h}| |\vec{p_i}| \sin^2 \theta_{hi}}{(\sum |\vec{p_h}|)^2}$

Thrust , Broadening (boson axis)

$$T = \frac{\sum |\vec{p}_{z,h}|}{\sum |\vec{p}_{h}|} \quad B = \frac{\sum |\vec{p}_{\perp}|}{2\sum |\vec{p}_{h}|}$$

X Sum over particles in current hemisphere (reject remnant)

Event Shapes

- X Differential distributions as function of scale Q
- X Not statistically limited (except highest Q)
- X Asymptotic freedom: higher scales \Rightarrow smaller $\alpha_s \Rightarrow$ collimated HFS $\Rightarrow \tau$ peaks at 0

X Theory:

- X DISASTER++ (Graudenz)
- X Soft gluon resummation at NLL (Dasgupta, Salam)
- X Power corrections (Dokshitzer, Webber)
- X Good description over full Q range, but not valid everywhere
- **X** Also available: τ_{c} , B, ρ , C

Event Shapes

X Simultaneous fit of $\alpha_{_{s}}(m_{_{Z}})$ and power correction parameter $\alpha_{_{0}}(2 {\rm GeV})$

X Universal $\alpha_0 = \mu_I^{-1} \int_0^{\mu_I} \alpha_{\text{eff}}(k) dk$ required for power corrections, similar value in e⁺e⁻

X Combine 5 event shapes into average:

 $\alpha_s(m_Z) = 0.1198 \pm 0.0013(\exp .)^{+0.0056}_{-0.0043}(\text{th }.)$

X Asymptotic freedom clearly demonstrated, huge range in Q

Merging F₂ and Jets in a Fit

X ZEUS-JETS QCD fit: inclusive cross sections +incl. jets in DIS + dijets in γ p

X Take care of correlated experimental uncertainties

X Jets improve gluon at higher x

T.Kluge, Strong coupling from Jets....

PIC06: 8 July 2006

Combining F₂ and Jets in a Fit

HERA Average

- $\pmb{\mathsf{X}}$ Great diversity in determinations of $\alpha_{\!_s}\!(m_{_Z}\!)\,$ at HERA
- X Consistent with each other
- X Theoretical uncertainties dominant
- X Build HERA average (without red ones)

 $lpha_s(m_Z) = 0.1186 \pm 0.0011 \,(ext{exp.}) \\ \pm 0.0050(ext{th.})$

- X Compatible with Bethke2004
- **X** With competitive precision

sent to DIS05

World average

Summary

- **X** Plenty of α_s determinations from **HERA** available
- **X** The **precision** is competitive to e^+e^- annihilation analyses
- **X Diversity** important to test universality of QCD
- X Precision needed for QCD itself and for background predictions e.g. at LHC
- X Still: theory at NLO induces large **theory errors**
- X Looking forward to NNLO calculations on the way...
- X ... and to fits to the wealth of HERA II data still to come!

Nobelprize.org

The Nobel Prize in Physics 2004

"the discovery of asymptotic freedom in the theory of the strong interaction"

 David J. Gross
 H. David
 Fran

 Kavli Institute for
 Politzer
 Mass

 Theoretical Physics
 California
 Institute of

 University of
 Institute of
 Tech

 California, Santa
 Technology
 (MIT)

 Barbara, USA
 (Caltech),
 Cam

 Pasadena, USA
 USA
 USA

Frank Wilczek Massachusetts Institute of Technology (MIT), Cambridge, A USA

T.Kluge, Strong coupling from Jets....

PIC06: 8 July 2006