Hadron Spectroscopy and fragmentation at HERA

Moriond 2006 QCD, La Thuile, Italy 18-25 March 2006

Nicola Coppola

On behalf of the H1 and ZEUS collaborations

- Introduction/Motivations
- Results: charmed hadrons, η/ω , f_0/f_2 , strange and

charmed pentaquarks

- Conclusions

Introduction

The process by which **coloured** quarks and gluons convert to colourless hadron is one outstanding problem in particle physics Example: production of a hadron

$$\sigma(p) = \int dz \, dp_{parton} \, \sigma(p_{parton}) D_{H}^{parton}(z) \, \delta(p - zp_{parton})$$

P = pQCD not applicable to fully calculate the fragmentation functions $D_{h}^{parton}(z)$

Phenomenological models based on laws of thermodynamics often used

> Are these models and $D_{h}^{parton}(z)$ universally applicable?

→ High energy collisions ⇒ large multiplicities of particles with low transverse momentum ⇒ opportunity to study hadronisation and to measure the various $D_{H}^{parton}(z)$

HERA Collider

ep kinematics

photon virtuality Q² energy c.m. √s=300-320 GeV hadronic energy W=m(γ *p) inelasticity $y=Q^2/(x_{Bi}s)$

two regimes: $Q^2 \approx 0 \text{ GeV}^2$ -- photoproduction $Q^2 > 1 \text{ GeV}^2$ -- electroproduction (DIS)

ZEUS and H1 detectors

- Tracking \Rightarrow momentum measurement, particle ID
- Calorimetry \Rightarrow energy measurement

Charm fragmentation fractions and fragmentation ratios

Into which hadrons does the charm quark hadronize?

Fragmentation fractions (total cross sections used):

$$\rightarrow f(c \rightarrow H) = \frac{\sigma(H)^{tot}}{\sigma(c)^{tot}}$$

Fragmentation ratios (direct cross sections used):

$$\mathbf{R}_{u/d} = \frac{\sigma(c\,\bar{u})_{S}^{dir} + \sigma(c\,\bar{u})_{V}^{dir}}{\sigma(c\,\bar{d}\,)_{S}^{dir} + \sigma(c\,\bar{d}\,)_{V}^{dir}}$$

$$\mathbf{P}_{V}^{d} = \frac{\sigma(c\,\bar{d}\,)_{V}^{dir}}{\sigma(c\,\bar{d}\,)_{S}^{dir} + \sigma(c\,\bar{d}\,)_{V}^{dir}}$$

$$\mathbf{P}_{V}^{u+d} = \frac{\sigma(c\,\bar{d}\,)_{V}^{dir} + \sigma(c\,\bar{d}\,)_{V}^{dir}}{\sigma(c\,\bar{d}\,)_{S}^{dir} + \sigma(c\,\bar{d}\,)_{V}^{dir} + \sigma(c\,\bar{u}\,)_{S}^{dir} + \sigma(c\,\bar{u}\,)_{V}^{dir}}$$

$$\mathbf{P}_{V}^{s} = 2\frac{\sigma(c\,\bar{s}\,)_{S}^{dir} + \sigma(c\,\bar{s}\,)_{V}^{dir}}{\sigma(c\,\bar{d}\,)_{S}^{dir} + \sigma(c\,\bar{d}\,)_{V}^{dir} + \sigma(c\,\bar{s}\,)_{V}^{dir}}$$

FF and FR of D⁺, D⁰, D^{*} and Λ_{c}

In agreement with each other, expectation and world average

Results: P_v and P_v^d

In agreement with world average

Results: fragmentation fractions

All fragmentation fractions are in agreement with world average and support assumption of universality

Non-charmed particle productions

In ZEUS and H1 production of well-known hadrons are measured: pions, K_{s}^{0} , Λ , protons, charmed mesons, J/ψ ... Latest result is the cross section measurement of: •Inclusive photoproduction of η , ρ^{0} , $f_{0}(980)$ and $f_{2}(1270)$

meson at H1, Photoproduction, 38.7 pb-1, W=210 GeV

$\eta,\,\rho^{\scriptscriptstyle 0},\,f_{\scriptscriptstyle 0}^{}(980)$ and $f_{\scriptscriptstyle 2}^{}(1270)$ meson at H1

H1 prelim.

Pentaquarks states Theory

The strange Pentaquark anti-decouplet

Search for θ^{\pm}

Search for
$$\theta^+ \rightarrow pK_s^0 / \theta^- \rightarrow pK_s^0$$

>ZEUS:

Candidate signal produced in forward pseudorapidity region

visible cross section measured in DIS

≻H1:

>No peak visible from H1 >Upper limits on cross section set, do not exclude ZEUS observation

ZEUS

1.65

M (GeV)

 $K_{S}^{0} p(\overline{p})$

 $Q^2 > 20 \text{ GeV}^2$

350

300

250

Search for Double Strange $\Xi^{-}_{3/2} \rightarrow \Xi^{-}\pi^{-}$

M = 1862 + 2 MeVwidth < 18 MeV, $\sim 3\sigma$

NA49 search for $\Xi_{3/2}^{-} \rightarrow \Xi^{-}\pi^{-}$ Similar analysis of NA49 repeated using ZEUS DIS data $\Xi_{3/2}^{-} \rightarrow \Xi^{-} \pi^{-} \rightarrow \Lambda^{0} \pi^{-} \pi^{-} \rightarrow p \pi^{-} \pi^{-} \pi^{-}$

Search for $\theta_c \rightarrow D^*p$

Comparison of H1 and ZEUS in similar phase space region

Acceptance corrected R_{cor}(D^{*}p(3100)/D^{*})

H1: kinematic region: in the visible D^{*}p range: and visible D^{*} range:

1<Q²<100 GeV² and 0.05<y<0.7 $p_{\tau}(D^*p)>1.5$ GeV, -1.5< $\eta(D^*p)<1.0$ $p_{\tau}(D^*)>1.5$ GeV, -1.5< $\eta(D^*)<1.0$

 $R_{cor}(D^*p(3100)/D^*)=(1.59\pm0.33(stat)^{+0.33}(syst))\%$ prel

ZEUS:

kinematic region: phase space: Q²>1 GeV² and y<0.957 p_T(D^{*})>1.5 GeV, -1.5<η(D^{*})<1.0

95% C.L. upper limit:

R_{cor}(D^{*}p(3100)/D^{*})<0.59% (<0.51% for both D⁰-decay channels)

ZEUS: full kinematic region (DIS+photoproduction) 95% C.L. upper limit:

R_{cor}(D^{*}p(3100)/D^{*})<0.47% (<0.39% for both D⁰-decay channels)

Observation of ZEUS and H1 are not compatible

Conclusions

- Precise measurements in wide kinematic ranges have been presented inclusive cross sections of D^{\pm} , D^{0} , D^{*} and Λ_{c} , were measured in DIS and
 - photoproduction
 •extracted fragmentation ratios and fractions support assumption
 - of universality
 - η , ρ^0 , $f_0(980)$, $f_2(1270)$: inclusive cross-section for hadronic
 - resonances has the same behaviour as observed for long-lived hadrons $\bullet0^{+}(1530)$: evidence for a narrow state (ZEUS). H1 does not observe this state but upper limit does not exclude ZEUS observation $\bullet\Xi^{-}(1860)$: no evidence for the NA49 signal at 1862 MeV (ZEUS) $\bullet0^{\circ}_{c}(3100)$: evidence from H1 for the narrow resonance, ZEUS with larger statistic does not see this signal \bullet Need more statistics (HERA2) to confirm or exclude the observations

HERA Collider

Kinematics

