Searches for New Physics in ep Scattering at HERA

The 41st Rencontres de Moriond on

ELECTROWEAK INTERACTIONS AND UNIFIED THEORIES

La Thuile, Aosta Valley, Italy

March 11 - 18, 2006

David South (DESY) for Martin Wessels (DESY) on behalf of the H1 and ZEUS collaborations

Electron-Proton Scattering at HERA

Dominant Processes at High P_T

Searches for New Physics at HERA – Moriond EW 2006

Searches at HERA

Model-dependent searches

Test models, verify predicted signatures and phase space

- Leptoquarks and LFV
- Excited Fermions
- Single Top Production
- Doubly Charged Higgs
- Supersymmetry

Model-independent searches

Compare data versus SM, reveal anomalies above small SM contribution

- Isolated Leptons and Missing P_T
- Multi Lepton Production
- General Search

Searches in inclusive DIS

Precision measurements allow for stringent constraints on new physics

- NC: Quark Radius, CI, Extra-Dimensions
- CC: Polarization Dependence (HERA II)

Topics in in red covered in this talk

Leptoquarks

Motivation

- Symmetry of quark and lepton generations raises the question of direct interactions
 - → Connection: Leptoquarks
- LQs appear in many extensions of the SM
- Scalar or vector bosons with Lepton (L) and Baryon (B) number and fractional em. charge
- Define Fermion number F = 3B + L

 γ_{ii} : Yukawa coupling, family indices i j

LQ at HERA: single production

Production and Decay

- M_{LQ} < E_{cm}: resonant production is dominant (s-channel)
- M_{LQ} > E_{cm}: u-channel contributes, transition to contact interactions
- Only 1st generation present in both production and decay
 - \rightarrow Interference with SM DIS
- Lepton flavour violating (LFV) process for muon or tau in final state (k≠1)

Leptoquark Limits

H1 Coll., Phys. Lett. B629 (2005) 9; ZEUS Coll., Phys. Rev. D 68, 052004 (2003)

λ

Search for 1st generation LQs

- H1 and ZEUS HERA I (94-00)
 - Lumi: e⁺p (~100 pb⁻¹), e⁻p (~15 pb⁻¹)
 - LQ: F = 0 F = 2
- Largely complementary data set
- Processes:

Topology	SM Background		
e + jet	Neutral Current DIS \rightarrow exploit angular dist. of LQ decay		
v + jet	Charged Current DIS		

\rightarrow No evidence for signal by both experiments

SCALAR LEPTOQUARKS WITH F=0 H1 (94-00) e⁺p

- Limits set on 14 types of LQ described by the BRW model (notation: J^{L,R}_{Isospin})
- For couplings of em. strength ($\lambda \sim 0.3$): mass exclusion ~ 280 GeV
- Similar limits obtained by ZEUS
- HERA sensitivity at high M and high λ

LFV Leptoquarks

ZEUS Coll., Eur. Phys. J. C44 (2005) 463

Search for LFV LQ decays

• Look for $ep \rightarrow \mu$ + jet and $ep \rightarrow \tau$ + jet

	1. A second second second second second second 201 and the second secon second second sec							
•	Low bac	ZEUS (94-00						
	Tanalamu		Nobserved / Nbackground		130 pb-1			
	10	ppology	LQ Selection					
	$ep \rightarrow \mu + jet$		<mark>0</mark> / 0.87 ± 0.15					
	ep $\rightarrow \tau$ + jet	$\tau \rightarrow e / \mu + P_T^{miss}$	<mark>0</mark> / 0.43 ± 0.08					
		$\tau \rightarrow had + P_{T}^{miss}$	<mark>0</mark> / 1.1 ± 0.5		LQs			
		•			Δ Δ			

• No evidence for signal found

Limits on LFV LQ decays

- For $M_{LQ} < E_{cm}$ limits on $\lambda_{eq} \ge \sqrt{\beta_{\mu\tau, q'}}$
- For $M_{LQ} > E_{cm}$ limits on $\lambda_{eq} \lambda_{Iq}$, / M_{LQ}^2
- \rightarrow Compare searches for LFV B decays, e.g:

• Limits on $\lambda_{eq_{-}\alpha} \lambda_{Iq_{-}\beta} / M^2_{LQ}$ in units of TeV⁻²

→ Several examples where DIS constraints are competitive with those from rare B decays

Isolated Leptons and Missing P_{T}

<u>Event Topology:</u> $ep \rightarrow I + P_T^{miss}$ (+ jet)

- High P_T isolated lepton (e, μ , τ)
- Large missing P_T
- P_T of hadronic system X

<u>SM Process:</u> $ep \rightarrow e W^{\pm}(\rightarrow I_{V}) X$

- Real W production with leptonic decay
- Usually soft hadronic system
- Total cross section ~ 1 pb

Backgrounds:

jet

e

- NC DIS: real lepton and fake P_T^{miss}
- CC DIS: real P_T^{miss} and fake lepton
- Pair Production: real lepton and fake P_T^{miss}

e

____ Z____R

"Anomalous" W production

H1 Coll., Phys. Lett. B561 (2003) 241; ZEUS Coll., Phys. Lett. B559 (2003) 153, Phys. Lett. B583 (2004) 41

HERA I:

- H1: excess of observed events at high P_{τ}^{X} (e, μ); τ channel agrees with SM
- ZEUS: e_{μ} channels agree with SM, but 2 spectacular τ events at high P_{τ}^{X}

H1/HERA II:

Events still show up in HERA II with higher rate compared to the SM prediction

Events

$P_T^X > 25 \text{ GeV}$	e channel	μ channel	combined e & μ	
H1 94-05	11 / 4.7 ± 0.9	$6/4.3 \pm 0.7$	17 / 9.0 + 1.5	
279 pb ⁻¹		V 4.0 ± 0.1	117 0.0 ± 1.0	
ZEUS 99-04	1 / 1.5 ± 0.2	ZEUS previous search: 7 / 5.7 (e,μ)		
106 pb ⁻¹		(HERA I, 130 pb ⁻¹ , W 45%)		

ZEUS/HERA I revised:

- New ZEUS analysis closer to H1 cuts
- Events still not observed in ZEUS data
- ZEUS and H1 SM expectations agree

ZEUS PLB 583 (2004)

Isolated Leptons: Prospects

- H1 excess only appears in e⁺p data
- Asymmetry or statistical fluctuation (3.4 σ)?

Months

Anomalous Single Top Production

H1 Coll., Eur. Phys. J. C33 (2004) 9; ZEUS Coll., Phys. Lett. B559 (2003) 153

Multi Lepton Production

H1 Coll., Eur. Phys. J. C31 (2003) 17

<u>Motivation:</u> If anomalous I- ν production, what about I-I final states?

-> Search for events with at least 2 isolated high P_T leptons (e, μ)

Dominant SM process:

Two-photon interaction

Backgrounds:

 Misidentified hadrons, photons from NC DIS and QED Compton

	M ₁₂ > 100 GeV	2e channel	3e channel
	H1 94-00 115 pb ⁻¹	<mark>3</mark> / 0.30 ± 0.04	<mark>3</mark> /0.23 ± 0.04
<u>HERA I</u>	ZEUS 94-00 131 pb ⁻¹	2/0.77 ± 0.08	0/0.37 ± 0.04

- H1 excess of 2e and 3e events at high M₁₂ (mass of two highest P_T electrons)
- No such excess seen in the ZEUS data

Multi Lepton Production

H1/HERA II

- Analysis extended to 2003-05 data
- Consideration of other 2 lepton and 3 lepton topologies (now ee, μμ, eμ, eee, eμμ)
- No new 2e/3e event at high M₁₂
- One new $e\mu\mu$ event at $M_{\mu\mu} > 100 \text{ GeV}$
- One new $e\mu\mu$ event at $M_{e\mu}$ > 100 GeV

Scale of Multi Lepton Production

- $\Sigma P_T = scalar sum of transverse momenta$
- Altogether at $\Sigma P_T > 100 \text{ GeV}$

 $N_{observed} = 4 / N_{SM} = 1.1 \pm 0.2$

• Highest ΣP_T events appear in e⁺p collisions

A General Search for New Phenomena

H1 Coll., Phys. Lett. B602 (2004) 14

Interesting Event

- e-j-j-j-j class: 1 / 0.03 \pm 0.01 (M_{inv}=262 GeV)
- At high mass NC DIS prediction only ~10⁻³ fb
- Rare SM processes might contribute, e.g. $ep \rightarrow eWWX$

Statistical quantification

- Systematic scan for deviations in M_{inv} / ΣP_T spectra of all event classes using dedicated statistical algorithm
- P quantifies significance of deviations found
- Lepton-jet- P_T^{miss} anomaly reappeared: μ -j- ν

General Search ideally suited to discover unexpected manifestations of new physics (watchdog)

Requirement: precise knowledge of overall detector performance

Summary

- Much activity and a lot of progress in BSM physics at HERA promoted by better understanding of the data, improved analysis techniques and new ideas
- Results often competitive and complementary to other colliders
- Some puzzling fluctuations which will need final clarification with most precise analysis
- HERA II large part of the lumi still to come!

→ More interesting results from HERA expected in near future

