Particle production and spectroscopy in *ep* collisions

Roberval Walsh (McGill University) On behalf of H1 and ZEUS Collaborations

- Introduction
- Charm fragmentation: ratios, fractions & functions
- Strange production: K_{S}^{0} , Λ production, ratios...
- Search for pentaquarks□
- Summary

Charm fragmentation ratios and fractions

- Are u- & d-quarks produced equally?
- 2. What is s-quark production suppression?

 $\gamma_s = \frac{2c\bar{s}}{(c\bar{d} + c\bar{u})}$

 $R_{u/d} = \frac{cu}{\overline{d}}$

- 3. Is the fraction of D mesons produced in a vector state in accordance with spin counting (=0.75)?
- $P_V = \frac{V}{(PS + V)}$

4. What are the fractions of c-quarks hadronising in a charm hadron?

- $f(c \rightarrow D, \Lambda_c) = \frac{N(D, \Lambda_c)}{N(c)}$
- 5. Are the charm fragmentation characteristics universal?

Charm hadrons cross sections needed to extract the ratios and fractions.

Charm mesons D⁰, D^{*}, D[±], D_s[±] and the Λ_c^{\pm} baryons are reconstructed in deep inelastic scattering at HERA with the **ZEUS** detector from the following decay modes:

- $D^0 \rightarrow K^- \pi^+$
- $D^{*+} \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^+$
- D+ $\Box \rightarrow \mathbf{K}^{-} \pi^{+} \pi^{+}$
- $D_s^{+} \xrightarrow{\Box} \phi \pi^+ \rightarrow K^- K^+ \pi^+$
- $\Lambda_c^+ \rightarrow \mathbf{K}^- \mathbf{p} \pi^+$
- (+ c.c.)

Event selection

- 1.5 < Q² < 1000 GeV²
- 0.02 < y < 0.7
- p_T(D,Λ_c) > 3 GeV
- $|\eta(D, \Lambda_c)| < 1.6$
- $\mathcal{L} = 81.7$ (65.0) pb⁻¹, 1998-2000 (1998-1999, for D⁺ and Λ_c due to trigger availability)

Charm hadrons reconstruction in DIS

Charm hadrons reconstruction in DIS

Charm fragmentation ratios

ZEUS yp

ZEUS (prel.) DIS

ZEUS preliminary results

$$R_{u/d} = \frac{\sigma^{untag}(D^0)}{\sigma(D^{\pm}) + \sigma^{tag}(D^0)} = 1.46 \pm 0.17^{+0.10}_{-0.34}$$

(Large systematic error from D^0 (untag) signal extraction procedure, this has consequences in the other measurements.)

$$\gamma_{s} = \frac{2\sigma(D_{s}^{\pm})}{\sigma(D^{\pm}) + \sigma^{untag}(D^{0}) + \sigma^{tag}(D^{0}) + 2\sigma^{add}(D^{*\pm})}$$
$$= 0.265 \pm 0.035^{+0.039}_{-0.048}$$

$$P_V^d = \frac{\sigma^{tag}(D^0) / B_{D^* \to D^0 \pi} + \sigma^{add}(D^{*\pm})}{\sigma(D^{\pm}) + \sigma^{tag}(D^0) + \sigma^{add}(D^{*\pm})} = 0.590 \pm 0.037^{+0.022}_{-0.018}$$

Measured $P_V^{\ d}$ is smaller than spin-counting prediction $P_V^{\ d}$ =0.75

Low-x meeting, June 28 - July 1, 2006, Lisbon, Portugal

Pv

Charm fragmentation fractions

$$\begin{split} f(c \to D^{+}) &= \frac{\sigma(D^{+}) + \sigma^{add} (D^{*+}) \cdot (1 - B_{D^{*+} \to D^{0} \pi^{+}})}{\sigma_{gs}} \\ f(c \to D^{0}) &= \frac{\sigma^{untag} (D^{0}) + \sigma^{tag} (D^{0}) + \sigma^{add} (D^{*+}) \cdot (1 + B_{D^{*+} \to D^{0} \pi^{+}})}{\sigma_{gs}} \\ f(c \to D^{*+}) &= \frac{\sigma^{tag} (D^{0}) / B_{D^{*+} \to D^{0} \pi^{+}} + \sigma^{add} (D^{*+})}{\sigma_{gs}} \end{split}$$

$$f(c \to D_s^+) = \frac{\sigma(D_s^+)}{\sigma_{gs}} \qquad \qquad f(c \to \Lambda_c^+) = \frac{\sigma(\Lambda_c^+)}{\sigma_{gs}}$$

where

$$\sigma_{gs} = \sigma(D^+) + \sigma^{untag}(D^0) + \sigma^{tag}(D^0) + 2\sigma^{add}(D^{*+}) + \sigma(D_s^+) + \sigma(\Lambda_c^+) \times 1.14$$

is the total charm cross section.

Rates from $\Xi_c^{0,\pm}$ and Ω_c^0 are estimated from non-charm Ξ and Ω states to be 14±5% of Λ_c rate.

R. Walsh

Low-x meeting, June 28 - July 1, 2006, Lisbon, Portugal

ļ

Charm fragmentation fractions

ZEUS preliminary results

R. Walsh

Low-x meeting, June 28 - July 1, 2006, Lisbon, Portugal

Charm fragmentation functions (H1)

Event selection

- $D^{*+} \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^+$
- 2 < Q² < 100 GeV²; 0.05 < y < 0.7
- p_T (D*) > 1.5 GeV; |η(D*)| < 1.5

Hemisphere method:

In γp -frame cc pair is balanced in p_T

Charm fragmentation functions (H1)

R. Walsh

Charm fragmentation functions (ZEUS)

jet

Jet method: Energy of c-quark is

Peterson

approximated by the energy of the D*

Event selection

- $D^{*+} \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^+$
- Q² < 1 GeV²; 130 < W < 280GeV
- $p_T (D^*) > 2 \text{ GeV}; |\eta(D^*)| < 1.5$
- $E_T^{jet} > 9 \text{ GeV}; |\eta^{jet}| < 2.4$

Low-x meeting, June 28 - July 1, 2006, Lisbon, Portugal

 $z = \frac{(E+p_L)_{D^*}}{2E_{jet}}$

Charm fragmentation functions

ZEUS and H1 comparison with other experiments

ZEUS

H1 hemisphere method $\langle \sqrt{s} \rangle \approx 10 \text{ GeV},$ $z = \frac{(E+p_L)_{D^*}}{\sum_{hem}(E+p)}$

 $\begin{array}{l} \textbf{OPAL} \ \sqrt{s} = 91.2 \ \text{GeV}, \\ z = 2 E_{D^*} / \sqrt{s} \end{array}$

CLEO $\sqrt{s} \approx 10$ GeV, z = p_{D*}/p_{max}

• Different extraction methods and different scales involved, reasonable agreement between charm fragmentation function from different processes.

Strange production at HERA

Strangeness is largely produced at HERA providing a rich environment to study the fragmentation process by investigating production rates, relative yields, polarizations...

Measurements performed in the following phase spaces:

- Photoproduction, at least 2 jets
- DIS 5 < Q² < 25 GeV²
- DIS Q² > 25 GeV²

For the three sets:

- $0.6 < p_T(K_s^0,\Lambda) < 2.5 \Box \text{ GeV}$
- $|\eta(K_s^0,\Lambda)| < 1.2$ R. Walsh Low

Reconstruction of ${\rm K}^{\rm 0}_{\ \rm s}$ and Λ

Clean background and high statistics

K⁰_s production

Λ and Λ production

- Similar situation as in the K⁰_s analysis.
- Adjusting a single parameter, λ_s , is not sufficient enough to describe the data simultaneously.

Λ to Λ asymmetry

- Results consistent with no asymmetry.
- Production of both baryons should follow the same mechanism.
- R. Influence from the initial proton should be small.

Baryon to meson ratio

- Ariadne predicts R well in DIS, whereas in PHP Pythia underestimates R.
- R ~ 0.4 for both direct PHP and low Q^2 DIS
- R increases up to ~0.7 for lower values of $x_{\gamma},$ where resolved PHP is dominant.

R. Walsh

Search for strange pentaquarks (ZEUS)

- $\frac{Search \; for \; \Theta}{observed}^{\textbf{+}} \rightarrow K^0{}_s p \; \text{- clear signal}$
- Q² > 20 GeV², 0.04 < y < 0.95
- $p_T(K_s^0p) > 0.5 \text{ GeV}, |\eta(K_s^0p)| < 1.5$
- p(p) < 1.5 GeV, p selection with dE/dx</p>
- > 221±48 events
- ➤ M(Θ⁺) = 1521.5±1.5^{+2.8}_{-1.7} MeV
- \succ width = 6.1±1.6 MeV

Search for strange pentaquarks (H1)

<u>Search for $\Theta^+ \rightarrow K^0_{s}p$ - NO signal observed by H1</u>

- 5 < Q² < 100 GeV², 0.1 < y < 0.6
- $p_T(K_s^0p) > 0.5 \text{ GeV}, |\eta(K_s^0p)| < 1.5$

R. Walsh

Search for strange pentaquarks (H1)

Search for
$$\Theta^+ \to K^0_{s}p$$

Applying an upper cut in the momentum of the proton for comparison with ZEUS

- p(p) < 1.5 GeV
- 20 < Q² < 100 GeV²
- notice different y ranges
 - 0.1 < y < 0.6 (H1)
 - 0.04 < y < 0.95 (ZEUS)

 $\sigma(ep \rightarrow e\Theta^+X \rightarrow eK_{s}^{0}pX) = 125 \pm 27 + 36_{-28}pb$

Search for strange pentaquarks (ZEUS)

Search for
$$\underline{\Xi}^{--} \to \Xi^{-} \pi^{--}$$

No Ξ^{--} signal observed!

Upper limit @ 95% CL:

Combinations / 10 MeV 00 05 05 05 Combinations / 10 MeV EUS 96-00 (a) Ξ⁰(1530) (b) Fit 60 Background Fit Q²>1 GeV² $Q^2 > 20 \text{ GeV}^2$ 50 neak=1533.3-1.0 Me 3(100 0.6 95% C.L. uppe limit on R 20 0.4 50 0.2 10 NA49 signal NA49 signal 1.5 1.6 1.7 1.8 1.5 1.6 1.7 1.8 1.9 2.1 1.9 2 22 23 24 2.1 $M(\Xi \pi)(GeV)$ $M(\Xi \pi)(GeV)$

ZEUS

N(Ξ⁻⁻)/N(Ξ⁰(1530)) < 0.29

Signal observed by NA49:

mass = 1862 MeV width < 18 MeV

Searches from other experiments give negative results

R. Walsh

Search for charm pentaguarks (H1)

<u>Search for $\Theta_{c} \rightarrow D^{*}p$ </u>

- DIS: 1 < Q² < 100 GeV²; 0.05 < y < 0.7 ₽</p>
- $\gamma p: Q^2 < 1 \text{ GeV}^2; 0.2 < y < 0.8$ D^* reconstructed from the decay mode: set $D^{*+} \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^+$
- protons selected using dE/dx measurements

- Mass = 3099 ± 3 ± 5 MeV
- Width = 12 ± 3 MeV
- 50.6±11.2 events

(5.4 σ : background fluctuation probability of 4x10⁻⁸ (poissonian) converted to gaussian sigmas)

28 - July 1, 2006, Lisbon, Portugal

Search for charm pentaquarks (H1)

Search for
$$\Theta_{c}
ightarrow D^{*}p$$

• Acceptance corrected ratio D^*p/D^* for 1 < Q² < 100 GeV² (preliminary) $R_{cor}(D^*p/D^*) = 1.59 \pm 0.33 + 0.33_{-0.45}\%$

- Differential cross sections in DIS
 - D*p suppressed close to the central rapidity regions compared to inclusive D*.

 D*p fragmentation function is hard as expected for a charm hadron of such mass. Hadronization function of D* from D*p is softer than inclusive D*.

4

Low-x meeting, June 28 - July 1, 2006, Li

Search for charm pentaguarks (ZEUS)

Summary

- The charm fragmentation ratios and fractions were measured in deep inelastic scattering at HERA and results are consistent with universality.
- Charm fragmentation functions are measured. Reasonable agreement from different processes.
- K_{s}^{0} , Λ , Λ production at HERA
 - Differential cross sections were measured in DIS and PHP.
 Data is reasonably well reproduced by Ariadne in DIS, where as Pythia fails to reproduce PHP.
 - o Λ to Λ production consistent with no asymmetry in the given phase space.
 - o Baryon to meson production ratio show an enhancement in resolved PHP. This is not predicted by Pythia.

Summary

Strange pentaquark searches

- o Narrow state K_{s}^{0} p observed by ZEUS at 1520 MeV. $\sigma(ep \rightarrow e\Theta^{+}X \rightarrow eK_{s}^{0}pX) = 125 \pm 27 + 36_{-28}pb$ Not seen by H1.
- o ZEUS does not observe $\Xi^{--} \rightarrow \Xi^{-}\pi^{-}$, seen by NA49.
- Charm pentaquark searches
 - o Narrow state D*p observed by H1 at 3099 MeV. $R_{cor}(D^*p/D^*) = 1.59 \pm 0.33 + 0.33_{-0.45}\%$ (in DIS) Not seen by ZEUS.